等腰梯形的性质
展开全部
等腰梯形的性质有:
1、等腰梯形同一底上的两个内角相等。
2、两腰相等,两底平行,对角线相等 ,对角互补
3、由托勒密定理可得等腰梯形ABCD,有AB*CD+BC*AD=AC*BD。即对角线的平方等于腰的平方与上、下底积的和。
4、中位线长是上下底边长度和的一半。
5、两条对角线相等。
6、对角线分成的四个三角形有3对全等三角形, 1对非全等的相似三角形。
7、等腰梯形的面积公式:等腰梯形的面积= (上底+下底)*高*1/2。
8、特殊面积计算:当对角线垂直时,等腰梯形的面积=(BD×AC)/2 。
9、几何语言: ∵四边形ABCD是等腰梯形 ∴∠A+∠B=180°,∠C+∠D=180°(两直线平行,同旁内角互补) 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 。
10、BD·AC=AB·DC+AD·BC
11、等腰梯形是轴对称图形,对称轴是通过两底中点的直线。
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询