命题“存在x∈R,使得|x-1|-|x+1|>3”的否定是______.

 我来答
绪经学意致
2020-01-30 · TA获得超过982个赞
知道答主
回答量:5
采纳率:0%
帮助的人:1022
展开全部
根据特称命题的否定是全称命题可知,存在x∈R,使得|x-1|-|x+1|>3的否定是:
任意x∈R,都有|x-1|-|x+1|≤3
故答案为:任意x∈R,都有|x-1|-|x+1|≤3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式