求教数学偏导第五题怎么写?
3个回答
展开全部
z'x = -f'x/f'z
= -(xy) (f'1 3x^2y^2 - f'2 z/(x^2 y)/f'2)
同理,
z'y = -f'y/f'z
= -(xy) (f'1 2x^3 y - f'2 z/y^2 x)/f'2)
dz = z'x dx + z'y dy
= -(xy) (f'1 3x^2y^2 - f'2 z/(x^2 y)/f'2)
同理,
z'y = -f'y/f'z
= -(xy) (f'1 2x^3 y - f'2 z/y^2 x)/f'2)
dz = z'x dx + z'y dy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第5题的解法之一如下:
记 F(x,y,z)=f(x³y², z/(xy)),则
∂F/∂x=3x²y²f₁'-zf₂'/(x²y),
∂F/∂y=2x³yf₁'-zf₂'/(xy²),
∂F/∂z=f₂'/(xy),
∴∂z/∂x=-(∂F/∂x)/(∂F/∂z)
=z/x-3x³y³f₁'/f₂',
∂z/∂y=-(∂F/∂y)/(∂F/∂z)
=z/y-2x⁴y²f₁'/f₂',
∴ dz=(∂z/∂x)dx+(∂z/∂y)dy
=(z/x-3x³y³f₁'/f₂')dx+(z/y-2x⁴y²f₁'/f₂')dy.
记 F(x,y,z)=f(x³y², z/(xy)),则
∂F/∂x=3x²y²f₁'-zf₂'/(x²y),
∂F/∂y=2x³yf₁'-zf₂'/(xy²),
∂F/∂z=f₂'/(xy),
∴∂z/∂x=-(∂F/∂x)/(∂F/∂z)
=z/x-3x³y³f₁'/f₂',
∂z/∂y=-(∂F/∂y)/(∂F/∂z)
=z/y-2x⁴y²f₁'/f₂',
∴ dz=(∂z/∂x)dx+(∂z/∂y)dy
=(z/x-3x³y³f₁'/f₂')dx+(z/y-2x⁴y²f₁'/f₂')dy.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询