设A,B,C是三个相互独立的随机事件,且0<P(C)<1.问AC的逆与C的逆是否相互独立,要具体思路 10

 我来答
AleegsLau
2023-03-14
知道答主
回答量:9
采纳率:0%
帮助的人:1802
展开全部
若要证明AC的逆与C的逆相互独立,则根据相互独立事件的性质,只需证明AC与C是相互独立的就可以了,亦即只需要证明
P(AC∩C) = P(AC)P(C)即可
于是
P(AC∩C) = P(AC) = P(A)P(C)
P(AC)P(C)=P(A)P(C)P(C)
当P(A)=0时,P(AC∩C) = P(AC)P(C) = 0,此时,AC和C是相互独立的;
当P(A)≠0时,由0<P(C)<1可知,P(C)P(C)<P(C),从而 P(A)P(C)P(C)≠P(A)P(C),亦即P(AC∩C)≠P(AC)P(C)。所以此时AC和C不是相互独立的,从而AC的逆与C的逆自然也就不是相互独立的了。
这个问题虽然已经过去10年了,但我还是要回答一下,希望能采纳这个答案,让更多人看到。现在很多考研辅导课程在讲这道题的时候,答案仍然是“AC的逆与C的逆不是相互独立”,其实这是不严谨的,因为很多老师都忽略了P(A)有可能等于0的情况,而且他们的依据是“相互独立的事件组任意不重复的事件进行集合运算后,新的集合与独立事件组的事件仍然是相互独立的”,这个定理本身没有问题,但并不代表包含重复事件的情况下就一定是不独立的。
longvipp
2013-06-19
知道答主
回答量:9
采纳率:0%
帮助的人:5.9万
展开全部
你确定题目对?
如果对的话;
P((AC)'C')=P((A'||C')C')=P(A'C'||C')=P(A'C')+P(C')-P(A'C'C')

所以P((AC)'C')=P(C')

又因为P(C')>=P((AC'))P(C')

因为P((AC)')=1-P(AC)
当P(A)=0时 事件独立
当P(A)!=0时 事件不独立

咳。。咳。。仅供参考
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式