计算(1-1/4)×(1-1/9)×(1-1/16)×……(1-1/4052169)
2个回答
展开全部
(1-1/4)×(1-1/9)×(1-1/16)×...×(1-1/4052169)
=[(2²-1)/2²][(3²-1)/3²][(4²-1)/4²]...[(2013²-1)/2013²]
=[(2+1)(2-1)/2²][(3+1)(3-1)/3²][(4+1)(4-1)/4²]...[(2013+1)(2013-1)/2013²]
=(1×3×2×4×3×5×...×2012×2014)/(2×3×4×...×2013)²
=[(1×2×3×...×2012)×(3×4×5×...×2014)]/(2×3×4×...×2013)²
=[1×2×2013×2014×(3×4×...×2012)²]/[2²×2013²×(3×4×...×2012)²]
=(1×2×2013×2014)/(4×2013²)
=1007/2013
=[(2²-1)/2²][(3²-1)/3²][(4²-1)/4²]...[(2013²-1)/2013²]
=[(2+1)(2-1)/2²][(3+1)(3-1)/3²][(4+1)(4-1)/4²]...[(2013+1)(2013-1)/2013²]
=(1×3×2×4×3×5×...×2012×2014)/(2×3×4×...×2013)²
=[(1×2×3×...×2012)×(3×4×5×...×2014)]/(2×3×4×...×2013)²
=[1×2×2013×2014×(3×4×...×2012)²]/[2²×2013²×(3×4×...×2012)²]
=(1×2×2013×2014)/(4×2013²)
=1007/2013
展开全部
(1-1/4)×(1-1/9)×(1-1/16)×...×(1-1/4052169)
=[1-(1/2)^2]×[1-(1/3)^2]×[1-(1/4)^2]×……×[1-(1/2013)^2]
=[(1-1/2)(1+1/2)]×[(1-1/3)(1+1/3)]×[(1-1/4)(1+1/4)]×……×[(1-1/2013)(1+1/2013)]
=1/2×3/2×2/3×4/3×3/4×4/5×……×2012/2013×2014/2013
=1/2×2014/2013
=1007/2013
=[1-(1/2)^2]×[1-(1/3)^2]×[1-(1/4)^2]×……×[1-(1/2013)^2]
=[(1-1/2)(1+1/2)]×[(1-1/3)(1+1/3)]×[(1-1/4)(1+1/4)]×……×[(1-1/2013)(1+1/2013)]
=1/2×3/2×2/3×4/3×3/4×4/5×……×2012/2013×2014/2013
=1/2×2014/2013
=1007/2013
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |