求十九题答案
2个回答
展开全部
证明:∵△ABC和△ECD是等边三角形,
∴∠ACB=∠ECD=60°,BC=AC,EC=CD.
∴∠ACB+∠ACE=∠ECD+∠ACE,
即∠BCE=∠ACD.
在△BCE和△ACD中,
∴△BCE≌△ACD(SAS).
∴BE=AD.(全等三角形的对应边相等)
∴∠ACB=∠ECD=60°,BC=AC,EC=CD.
∴∠ACB+∠ACE=∠ECD+∠ACE,
即∠BCE=∠ACD.
在△BCE和△ACD中,
∴△BCE≌△ACD(SAS).
∴BE=AD.(全等三角形的对应边相等)
更多追问追答
追答
解释一下:
证简单的线段相等,可通过证线段所在的三角形全等来得出结论.观察所求和已知条件,可证△ACD≌△BCE;这两个三角形中,已知的条件有:BC=AC,EC=CD,而∠ACD和∠BCE同为60°角的补角,由此可根据SAS证得两三角形全等,即可得证。
望采纳!谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询