(2014?宁波模拟)如图,三棱锥P-ABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O,D分别是AB,PB的

(2014?宁波模拟)如图,三棱锥P-ABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O,D分别是AB,PB的中点,PO⊥AB,点Q在线段AC上,且... (2014?宁波模拟)如图,三棱锥P-ABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O,D分别是AB,PB的中点,PO⊥AB,点Q在线段AC上,且AQ=2QC.(Ⅰ)证明:CD∥平面OPQ(Ⅱ)若二面角A-PB-C的余弦值的大小为55,求PA. 展开
 我来答
秋蕾1528
2014-09-10 · 超过78用户采纳过TA的回答
知道答主
回答量:138
采纳率:85%
帮助的人:66.5万
展开全部
(Ⅰ)证明:连接AD,交PO于M,连接OD,QM,则
∵点O,D分别是AB,PB的中点,
∴OD∥AP,OD=
1
2
AP,
AM
MD
AP
OD
=2=
AQ
QC

∴MQ∥CD,
∵MQ?平面OPQ,CD?平面OPQ,
∴CD∥平面OPQ
(Ⅱ)解:连接OC,则
∵平面PAB⊥平面ABC,PO⊥AB,平面PAB∩平面ABC=AB,
∴PO⊥平面ABC,
∴PO⊥AB,PO⊥OC
∵AC=BC,点O是AB的中点,
∴OC⊥AB,且OA=OB=OC=
2
a,
作OH⊥PB于H,连接CH,则
∵PO⊥OC,OC⊥AB,PO∩AB=A,
∴OC⊥平面PAB,
∴CH⊥PB,
∴∠CHO是二面角A-PB-C的平面角,
∵二面角A-PB-C的余弦值的大小为
5
5

∴cos∠CHO=
5
5

∴tan∠CHO=2,
在Rt△COH中,∴HO=
2
2
a,
∴HB=
6
2
a,
在Rt△POB中,由射影定理可得OB2=BH?BP,
∴BP=
OB2
BH
=
2a2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消