已知数列{an}的通项公式为an=7n+2,数列{bn}的通项公式为bn=n2.若将数列{an},{bn}中相同的项按从小到

已知数列{an}的通项公式为an=7n+2,数列{bn}的通项公式为bn=n2.若将数列{an},{bn}中相同的项按从小到大的顺序排列后看作数列{cn},则c9的值为_... 已知数列{an}的通项公式为an=7n+2,数列{bn}的通项公式为bn=n2.若将数列{an},{bn}中相同的项按从小到大的顺序排列后看作数列{cn},则c9的值为______. 展开
 我来答
卤蛋犈麰蜂怗
2014-09-09 · 超过62用户采纳过TA的回答
知道答主
回答量:112
采纳率:0%
帮助的人:154万
展开全部
令an=bm,即7n+2=m2
设k∈Z,
1.若m=7k,则bm=49k2=7(7k2)?{an}.
2.若m=7k+1,则bm=(7k+1)2=49k2+14k+1=7(7k2+2k)+1?{an}.
3.若m=7k+2,则bm=(7k+2)2=49k2+28k+4=7(7k2+4k)+4?{an}.
4.若m=7k+3,则bm=(7k+3)2=49k2+42k+9=7(7k2+6k+1)+2∈{an}.
5.若m=7k+4,则bm=(7k+4)2=49k2+56k+16=7(7k2+8k+2)+2∈{an}.
6.若m=7k+5,则bm=(7k+5)2=49k2+70k+25=7(7k2+10k+3)+4?{an}.
7.若m=7k+6,则bm=(7k+6)2=49k2+84k+36=7(7k2+12k+5)+1,不∈{an}.
故当m=7k+3和m=7k+4,k∈Z时,项bm才能在{an}中出现,即为公共项.
所以公共项为b3,b4,b10,b11,b17,b18,b24,b25,b31,b32,…
所以c9=312=961.
故答案为:961
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式