已知,把Rt△ABC和Rt△DEF按图①摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°

已知,把Rt△ABC和Rt△DEF按图①摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.... 已知,把Rt△ABC和Rt△DEF按图①摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图②,△DEF从图①位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围. 展开
 我来答
暗光7uJX
2014-12-13 · TA获得超过218个赞
知道答主
回答量:128
采纳率:0%
帮助的人:156万
展开全部
解:(1)当D在AC上时,
∵DE=DF,
∴EC=CF=
1
2
EF=5,
∴t=5;

(2)存在.
∵AP=t,∠EDF=90°,∠DEF=45°,
∴∠CQE=45°=∠DEF,
∴CQ=CE=t,
AQ=8-t,当0≤t<5时,
①AP=AQ,
t=8-t,
∴t=4;
②AP=PQ,
作PH⊥AC于H,
AH=HQ=
1
2
AQ=4-
1
2
t,
∵PH∥BC,
∴△APH∽△ABC,
AP
AH
=
AB
AC
,即
t
4?
1
2
t
=
10
8

解得,t=
40
13

③AQ=PQ,
作QI⊥AB于I,
AI=PI=
1
2
AP=
1
2
t(等腰三角形的性质三线合一),
∵∠AIQ=∠ACB=90°,∠A=∠A,
∴△AIQ∽△ACB,
AI
AQ
=
AC
AB
,即
1
2
t
8?t
=
8
10
,解得t=
64
13

④当5≤t≤10时,AQ=PQ,作PH⊥BC,PG⊥AC,
同理可求出,
FC=QC=10-t,BP=10-t,
PH=
4
5
(10-t)=8-
4
5
t,
BH=
3
5
(10-t)=6-
3
5
t,
QG=QC-GC=QC-PH=10-t-(8-
4
5
t)=2-
t
5
,PG=HC=6-(6-
3
5
t)=
3
5
t,
PQ=AQ=8-(10-t)=t-2,
∴PQ 2=PG 2+QG 2
(t-2)2=(
3
5
t)2+(2-<
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消