如图,已知以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,(1)求证:DE是⊙O

如图,已知以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,(1)求证:DE是⊙O的切线;(2)连接OE,当∠CAB为何值时,四边形A... 如图,已知以Rt△ABC的直角边AB为直径作⊙O与斜边AC交于点D,E为BC边的中点,连接DE,(1)求证:DE是⊙O的切线;(2)连接OE,当∠CAB为何值时,四边形AOED是平行四边形.(3)在第(2)条件下探索OBED的形状. 展开
 我来答
子伟火人1452
2014-11-06 · 超过64用户采纳过TA的回答
知道答主
回答量:187
采纳率:0%
帮助的人:58.7万
展开全部
解答:(1)证明:连接OD、DB,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠CDB=90°,
∵E为BC边上的中点,
∴CE=EB=DE,
∴∠1=∠2,
∵OB=OD,
∴∠3=∠4,
∴∠1+∠4=∠2+∠3,
∵在Rt△ABC中,∠ABC=∠2+∠3=90°,
∴∠EDO=∠1+∠4=90°,
∵D为⊙O上的点,
∴DE是⊙O的切线.

(2)解:∠CAB=45°.
理由是:∵OA=OD,
∴∠A=∠ODA=45°,
∴∠DOA=180°-45°-45°=90°=∠EDO,
∴DE∥AO,
∵E为BC中点,OA=OB,
∴EO∥AD,
∴四边形AOED是平行四边形,
即当∠A=45°时,四边形AOED是平行四边形.

(3)解:OBED的形状是正方形.
理由是:∵∠EDO=∠DOB=∠EBA=90°,OB=OD,
∴四边形OBED是正方形,
即OBED的形状是正方形.
五阿哥wuagewuage
2019-05-30
知道答主
回答量:1
采纳率:0%
帮助的人:721
引用软件神罚552的回答:
解答:(1)证明:连接OD、DB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠CDB=90°,∵E为BC边上的中点,∴CE=EB=DE,∴∠1=∠2,∵OB=OD,∴∠3=∠4,∴∠1+∠4=∠2+∠3,∵在Rt△ABC中,∠ABC=∠2+∠3=90°,∴∠EDO=∠1+∠4=90°,∵D为⊙O上的点,∴DE是⊙O的切线.(2)解:∠CAB=45°.理由是:∵OA=OD,∴∠A=∠ODA=45°,∴∠DOA=180°-45°-45°=90°=∠EDO,∴DE∥AO,∵E为BC中点,OA=OB,∴EO∥AD,∴四边形AOED是平行四边形,即当∠A=45°时,四边形AOED是平行四边形.(3)解:OBED的形状是正方形.理由是:∵∠EDO=∠DOB=∠EBA=90°,OB=OD,∴四边形OBED是正方形,即OBED的形状是正方形.
展开全部
题目中根本没有给出DE=BE这一条件。需证明。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式