求一个正交的相似变换矩阵,将下列对称矩阵化为对角阵 [2,-2,0;-2,1,-2;0 -2,0]

 我来答
龙楚六绮梦
2019-06-18 · TA获得超过1364个赞
知道小有建树答主
回答量:1396
采纳率:100%
帮助的人:6.7万
展开全部
|A-λE| =
2-λ -2 0
-2 1-λ -2
0 -2 -λ
r1+(1/2)(2-λ)r2 - r3
0 (1-λ)(2-λ)/2 -2(1-λ)
-2 1-λ -2
0 -2 -λ
第1行提出 (1-λ),再按第1列展开 = 2 乘
(2-λ)/2 -2
-2 -λ
2乘到第1行上
2-λ -4
-2 -λ
= λ^2 -2λ - 8 = (λ-4)(λ+2)
所以 |A-λE| =(1-λ)(λ-4)(λ+2)
特征值为 1,4,-2
A-E 化成行简化梯矩阵
1 0 1
0 1 1/2
0 0 0
特征向量为:(2,1,-2),单位化得 a1 = (2/3,1/3,-2/3)'
A-4E 化成行简化梯矩阵
1 0 -2
0 1 2
0 0 0
特征向量为:(2,-2,1),单位化得 a2 = (2/3,-2/3,1/3)'
A+2E 化成行简化梯矩阵
1 0 -1/2
0 1 -1
0 0 0
特征向量为:(1,2,2),单位化得 a3 = (1/3,2/3,2/3)'
则 P = (a1,a2,a3) 是正交矩阵,且有 P^-1AP = diag(1,4,-2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式