设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分
设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.(Ⅰ)求该椭圆的...
设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程. 展开
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程. 展开
2013-06-21
展开全部
解:(Ⅰ)设椭圆的方程为,F2(c,0)
∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即
∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴
在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|=
∵S=4,∴b2=4,∴a2=5b2=20
∴椭圆标准方程为;
(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2
代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0①
设P(x1,y1),Q(x2,y2),
∴,
∵,
∴=
∵PB2⊥QB2,∴
∴,∴m=±2
所以满足条件的直线有两条,其方程分别为x+2y+2=0和x﹣2y+2=0.
∵△AB1B2是的直角三角形,|AB1|=AB2|,∴∠B1AB2为直角,从而|OA|=|OB2|,即
∵c2=a2﹣b2,∴a2=5b2,c2=4b2,∴
在△AB1B2中,OA⊥B1B2,∴S=|B1B2||OA|=
∵S=4,∴b2=4,∴a2=5b2=20
∴椭圆标准方程为;
(Ⅱ)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2
代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0①
设P(x1,y1),Q(x2,y2),
∴,
∵,
∴=
∵PB2⊥QB2,∴
∴,∴m=±2
所以满足条件的直线有两条,其方程分别为x+2y+2=0和x﹣2y+2=0.
2013-06-21
展开全部
这貌似是2012我重庆市的理数高考题,百度能有答案。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询