如何用定义证明函数极限?
1个回答
展开全部
用定义证明极限都是格式的写法:
限 |x-1/2|<1/4,有 |x-1| > 1/2-|x-1/2| > 1/2-1/4 = 1/4。任意给定ε>0,要使
|x/(x-1)-(-1)| = 2|(x-1/2)/(x-1)|
= 2|x-1/2|/|x-1| < 2|x-1/2|/(1/4)
= 8|x-1/2| < ε,只须 |x-2| < min{ε/8,1/4}。
取 δ(ε) = min{ε/8,1/4} > 0,则当 0< |x-1/2| < δ(ε) 时,就有|x/(x-1)-(-1) <= 8|x-1/2| < …< ε ,根据极限的定义,得证。
需知:
十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。
1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询