积分中值定理经典错误是什么?
1个回答
展开全部
用积分中值定理后,所得商的分母为t,而分子是被积函数在积分区域内一点的值,此时是不能再用洛必达法则的(尽管分子当t趋于0+时极限是0),因为已无法保证分子与分母这两个函数满足柯西中值定理的条件了!
方法不止一种,各种定义之间也不是完全等价的。其中的差别主要是在定义某些特殊的函数:在某些积分的定义下这些函数不可积分,但在另一些定义之下它们的积分存在。然而有时也会因为教学的原因造成定义上的差别。最常见的积分定义是黎曼积分和勒贝格积分。
最简单的取样分割方法是将区间均匀地分成若干个长度相等的子区间,然后在每个子区间上按相同的准则取得标记点。
勒贝格积分的出现源于概率论等理论中对更为不规则的函数的处理需要。黎曼积分无法处理这些函数的积分问题。因此,需要更为广义上的积分概念,使得更多的函数能够定义积分。同时,对于黎曼可积的函数,新积分的定义不应当与之冲突。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询