gep构造决策树的适应值怎么算

 我来答
己学好4
2015-02-12 · TA获得超过1.5万个赞
知道大有可为答主
回答量:1.1万
采纳率:91%
帮助的人:5191万
展开全部
信息熵的计算:
-p[i]logp[i],底数为2
public static double calcEntropy(int p[]) { double entropy = 0; // 用来计算总的样本数量,p[i]/sum即i的概率 double sum = 0; int len = p.length; for (int i = 0; i < len; i++) { sum += p[i]; } for (int i = 0; i < len; i++) { entropy -= p[i] / sum * log2(p[i] / sum); } return entropy; }

给定一个样本数组,先一轮循环计算出样本总量,后面即可得出每个样本的概率,就可以套用公式计算了
信息增益就是信息熵的变化值,信息熵下降最快的节点就可以作为决策树的根节点,缩短树的高度
一个属性A相对样本集S的信息增益为:

gain(S,A) = H(S) – A属性为已知值的加权信息熵
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式