高一数学题目--三角比

在三角形OAB中,O为原点坐标,A(1,cosθ),B(sinθ,1),θ∈(0,π/2〕〕则当三角形OAB的面积达到最大时,θ的值为()Aπ/6Bπ/4Cπ/3Dπ/4... 在三角形OAB中,O为原点坐标,A(1,cosθ),B(sinθ,1),θ∈(0,π/2〕〕则当三角形OAB的面积达到最大时,θ的值为()
A π/6 B π/4 C π/3 D π/4

写下过程~谢谢了
展开
百度网友cddcfc3
2008-06-07 · TA获得超过11.2万个赞
知道大有可为答主
回答量:1.3万
采纳率:0%
帮助的人:2.5亿
展开全部
应该是求面积的最小值,选D

过点A作AC平行于x轴,与OB交于点C
C点的纵坐标是cosθ,且在直线OB上,所以可写出它的横坐是sinθcosθ

AC=-1-sinθcosθ
S(OAB)
=(1/2)*AC*1
=(1/2)(1-sinθcosθ)
=(1/2)(1-(sin2θ/2))
>=(1/2)(1-1/2)
=1/4

面积最小值是1/4,没有最大值,当x∈[0,π/2]时,才有最大值S(max)=1/2,此时x=0或x=π/2,没有这个选项
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式