已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B
已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边...
已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.(1)结合以上信息及图2填空:图2中的m=______;(2)求B、C两点的坐标及图2中OF的长;(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由.
展开
1个回答
展开全部
解:(1)如图1,∵四边形ODEF是等腰梯形,
∴OA=BC且OA∥BC,
∴四边形OABC是平行四边形,
由已知可得:S△AOC=8,连接AC交x轴于R点,
又∵A(4,2),C(n,-2),
∴S△AOC=S△AOR+S△ROC=0.5×RO×2+0.5×RO×2=2RO=8,
∴OR=4,
∴m=OA=
=
=2
;
故答案为:2
;
(2)∵OB=2RO=8,CR=AR=2,AR⊥OB,
∴B(8,0),C(4,-2)且平行四边形OABC是菱形,
∴OF=3AO=3×2
=6
;
(3)如图3,在OB上找一点N使ON=OG,连接NH,
∵OM平分∠AOB,
∴∠AOM=∠BOM,
在△GOH和△NOH中,
∴OA=BC且OA∥BC,
∴四边形OABC是平行四边形,
由已知可得:S△AOC=8,连接AC交x轴于R点,
又∵A(4,2),C(n,-2),
∴S△AOC=S△AOR+S△ROC=0.5×RO×2+0.5×RO×2=2RO=8,
∴OR=4,
∴m=OA=
OR2+AR2 |
42+22 |
5 |
故答案为:2
5 |
(2)∵OB=2RO=8,CR=AR=2,AR⊥OB,
∴B(8,0),C(4,-2)且平行四边形OABC是菱形,
∴OF=3AO=3×2
5 |
5 |
(3)如图3,在OB上找一点N使ON=OG,连接NH,
∵OM平分∠AOB,
∴∠AOM=∠BOM,
在△GOH和△NOH中,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|