数据统计分析方法有哪些?
2021-07-30 · 专注大学生职业技能培训在线教育品牌
1、分解主题分析
所谓分解主题分析,是指对于不同分析要求,我们可以初步分为营销主题、财务主题、灵活主题等,然后将这些大的主题逐步拆解为不同小的方面来进行分析。
2、钻取分析
所谓钻取分析,是指改变维的层次,变换分析的粒度。按照方向方式分为:向上和向下钻取。向上钻取是在某一维上将低层次的细节数据概括到高层次的汇总数据,或者减少维数;是自动生成汇总行的分析方法。向下钻取是从汇总数据深入到细节数据进行观察或增加新维的分析方法。
3、常规比较分析
所谓常规比较分析,是指一般比较常见的对比分析方法,例如有时间趋势分析、构成分析、同类比较分析、多指标分析、相关性分析、分组分析、象限分析等。
4、大型管理模型分析
所谓大型管理模型分析,是指依据各种成熟的、经过实践论证的大型管理模型对问题进行分析的方法。比较常见的大型管理模型分析包括RCV模型、阿米巴经营、品类管理分析等。
5、财务和因子分析
所谓财务和因子分析,主要是指因子分析法在财务信息分析上的广泛应用。因子分析的概念起源于20世纪初的关于智力测试的统计分析,以最少的信息丢失为前提,将众多的原有变量综合成较少的几个综合指标,既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失,达到有效的降维。比较常用的财务和因子分析法有杜邦分析法、EVA分析、财务指标、财务比率、坪效公式、品类公式、流量公式等。
6、专题大数据分析
所谓专题大数据分析,是指对特定的一些规模巨大的数据进行分析。大数据常用来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。常见特征是数据量大、类型繁多、价值密度低、速度快、时效低。比较常见的专题大数据分析有:市场购物篮分析、重力模型、推荐算法、价格敏感度分析、客户分组分析等分析方法。
2019-06-26 广告