证明∫(0,+∞)dx/(1+x^4)=∫(0,+∞)x^2/(1+x^4)dx.并求值

 我来答
雾光之森
2014-12-21 · TA获得超过3415个赞
知道大有可为答主
回答量:1540
采纳率:100%
帮助的人:590万
展开全部
对第一项积分做倒变换t=1/x即得证;
利用这个结论,
2*∫(0,+∞)dx/(1+x^4)=∫(0,+∞)dx/(1+x^4)+∫(0,+∞)x^2/(1+x^4)dx
=∫(0,+∞)(1+x^2)/(1+x^4)dx

=∫(0,+∞)[1+(1/x^2)]/[(1/x^2)+x^2]dx
=∫(0,+∞)1/[(x-1/x)^2+2]d(x-1/x)
=1/(根号2)*arctan[(x-1/x)/(根号2)] x趋向于+∞ ;x=0
=1/(根号2)*[π/2-(-π/2)]
=π/(根号2).
茹翊神谕者

2023-07-24 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1686万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-12-21
展开全部
好像是我不一定对3比9
追问
嗯?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式