证明∫(0,+∞)dx/(1+x^4)=∫(0,+∞)x^2/(1+x^4)dx.并求值
3个回答
展开全部
对第一项积分做倒变换t=1/x即得证;
利用这个结论,
2*∫(0,+∞)dx/(1+x^4)=∫(0,+∞)dx/(1+x^4)+∫(0,+∞)x^2/(1+x^4)dx
=∫(0,+∞)(1+x^2)/(1+x^4)dx
=∫(0,+∞)[1+(1/x^2)]/[(1/x^2)+x^2]dx
=∫(0,+∞)1/[(x-1/x)^2+2]d(x-1/x)
=1/(根号2)*arctan[(x-1/x)/(根号2)] x趋向于+∞ ;x=0
=1/(根号2)*[π/2-(-π/2)]
=π/(根号2).
利用这个结论,
2*∫(0,+∞)dx/(1+x^4)=∫(0,+∞)dx/(1+x^4)+∫(0,+∞)x^2/(1+x^4)dx
=∫(0,+∞)(1+x^2)/(1+x^4)dx
=∫(0,+∞)[1+(1/x^2)]/[(1/x^2)+x^2]dx
=∫(0,+∞)1/[(x-1/x)^2+2]d(x-1/x)
=1/(根号2)*arctan[(x-1/x)/(根号2)] x趋向于+∞ ;x=0
=1/(根号2)*[π/2-(-π/2)]
=π/(根号2).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询