已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=k...
已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
展开
展开全部
(Ⅰ)函数的导数f′(x)=3x2-6x+a;f′(0)=a;
则y=f(x)在点(0,2)处的切线方程为y=ax+2,
∵切线与x轴交点的横坐标为-2,
∴f(-2)=-2a+2=0,
解得a=1.
(Ⅱ)当a=1时,f(x)=x3-3x2+x+2,
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,
由题设知1-k>0,
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
则h′(x)=3x2-6x=3x(x-2)在(0,2)上单调递减,在(2,+∞)单调递增,
∴在x=2时,h′(x)取得极小值h′(2)=0,
g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
∴g(x)>h(x)≥h(2)=0,
∴g(x)=0在(0,+∞)上没有实根.
综上当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
则y=f(x)在点(0,2)处的切线方程为y=ax+2,
∵切线与x轴交点的横坐标为-2,
∴f(-2)=-2a+2=0,
解得a=1.
(Ⅱ)当a=1时,f(x)=x3-3x2+x+2,
设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,
由题设知1-k>0,
当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
则h′(x)=3x2-6x=3x(x-2)在(0,2)上单调递减,在(2,+∞)单调递增,
∴在x=2时,h′(x)取得极小值h′(2)=0,
g(-1)=k-1,g(0)=4,
则g(x)=0在(-∞,0]有唯一实根.
∴g(x)>h(x)≥h(2)=0,
∴g(x)=0在(0,+∞)上没有实根.
综上当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询