已知数列{an}满足首项为a1=2,an+1=2an(n∈N*).设bn=3log2an-2(n∈N*),数列{cn}满足cn=anbn.(Ⅰ
已知数列{an}满足首项为a1=2,an+1=2an(n∈N*).设bn=3log2an-2(n∈N*),数列{cn}满足cn=anbn.(Ⅰ)求证:数列{bn}成等差数...
已知数列{an}满足首项为a1=2,an+1=2an(n∈N*).设bn=3log2an-2(n∈N*),数列{cn}满足cn=anbn.(Ⅰ)求证:数列{bn}成等差数列;(Ⅱ)求数列{cn}的前n项和Sn.
展开
1个回答
展开全部
解答:(Ⅰ)证明:∵an+1=2an,且a1=2≠0,
∴数列{an}为等比数列,则an=a1qn-1=2n,
∴bn=3log2an-2=3log22n-2=3n-2.
∵bn+1-bn=3(n+1)-2-3n+2=3,
∴{bn}为以3为公差的等差数列;
(Ⅱ)解:∵cn=anbn=(3n-2)?2n,
∴Sn=1?2+4?22+7?23+…+(3n-2)?2n ①
2Sn=1?22+4?23+7?24+…+(3n-5)?2n+(3n-2)?2n+1 ②
①-②得:-Sn=2+3[22+23+24+…+2n]-(3n-2)?2n+1
=2+3?
-(3n-2)?2n+1=-10+(5-3n)?2n+1,
∴Sn=10-(5-3n)?2n+1.
∴数列{an}为等比数列,则an=a1qn-1=2n,
∴bn=3log2an-2=3log22n-2=3n-2.
∵bn+1-bn=3(n+1)-2-3n+2=3,
∴{bn}为以3为公差的等差数列;
(Ⅱ)解:∵cn=anbn=(3n-2)?2n,
∴Sn=1?2+4?22+7?23+…+(3n-2)?2n ①
2Sn=1?22+4?23+7?24+…+(3n-5)?2n+(3n-2)?2n+1 ②
①-②得:-Sn=2+3[22+23+24+…+2n]-(3n-2)?2n+1
=2+3?
4(1-2n-1) |
1-2 |
∴Sn=10-(5-3n)?2n+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询