如图,已知:在⊙O中,AB是⊙O的直径,弦CD垂直平分OA,垂足为E,连接AC、BC、BD、OD.(1)求证:AC=OD

如图,已知:在⊙O中,AB是⊙O的直径,弦CD垂直平分OA,垂足为E,连接AC、BC、BD、OD.(1)求证:AC=OD;(2)判断△BCD的形状,并说明理由;(3)在⊙... 如图,已知:在⊙O中,AB是⊙O的直径,弦CD垂直平分OA,垂足为E,连接AC、BC、BD、OD.(1)求证:AC=OD;(2)判断△BCD的形状,并说明理由;(3)在⊙O的圆周上找一点M,使A、C、M三点组成等腰三角形,请直接写出此时∠ACM的度数的所有情况. 展开
 我来答
金刚要要用才7820
推荐于2016-01-01 · TA获得超过217个赞
知道答主
回答量:113
采纳率:0%
帮助的人:139万
展开全部
解答:(1)证明:连接OC,
∵弦CD垂直平分OA,
∴∠OEC=90°,OE=
1
2
OA=
1
2
OC,
∴∠OCE=30°,
∴∠AOC=60°,
∵OC=OA,
∴△AOC是等边三角形,
∴AC=OA=OC,
∴AC=OD;

(2)△BCD是等边三角形.
理由:弦CD垂直平分OA,
∴BC=BD,
∵OC=OD,
∴∠DOE=∠COE=60°,
∴∠COD=120°,
∴∠CBD=
1
2
∠COD=60°,
∴△BCD是等边三角形;

(3)若AC=AM,则点M与点D重合,此时∠ACM=30°;
若AM=CM,则点M在AC的垂直平分线上,当点M在劣弧
AC
上时,∠ACM=15°;当点M在优弧
ABC
上时,∠ACM=75°;
若AC=CM,则∠ACM=120°.
综上可得:∠ACM的度数为:15°,30°,75°,120°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式