如图,已知:在⊙O中,AB是⊙O的直径,弦CD垂直平分OA,垂足为E,连接AC、BC、BD、OD.(1)求证:AC=OD
如图,已知:在⊙O中,AB是⊙O的直径,弦CD垂直平分OA,垂足为E,连接AC、BC、BD、OD.(1)求证:AC=OD;(2)判断△BCD的形状,并说明理由;(3)在⊙...
如图,已知:在⊙O中,AB是⊙O的直径,弦CD垂直平分OA,垂足为E,连接AC、BC、BD、OD.(1)求证:AC=OD;(2)判断△BCD的形状,并说明理由;(3)在⊙O的圆周上找一点M,使A、C、M三点组成等腰三角形,请直接写出此时∠ACM的度数的所有情况.
展开
1个回答
展开全部
解答:(1)证明:连接OC,
∵弦CD垂直平分OA,
∴∠OEC=90°,OE=
OA=
OC,
∴∠OCE=30°,
∴∠AOC=60°,
∵OC=OA,
∴△AOC是等边三角形,
∴AC=OA=OC,
∴AC=OD;
(2)△BCD是等边三角形.
理由:弦CD垂直平分OA,
∴BC=BD,
∵OC=OD,
∴∠DOE=∠COE=60°,
∴∠COD=120°,
∴∠CBD=
∠COD=60°,
∴△BCD是等边三角形;
(3)若AC=AM,则点M与点D重合,此时∠ACM=30°;
若AM=CM,则点M在AC的垂直平分线上,当点M在劣弧
上时,∠ACM=15°;当点M在优弧
上时,∠ACM=75°;
若AC=CM,则∠ACM=120°.
综上可得:∠ACM的度数为:15°,30°,75°,120°.
∵弦CD垂直平分OA,
∴∠OEC=90°,OE=
1 |
2 |
1 |
2 |
∴∠OCE=30°,
∴∠AOC=60°,
∵OC=OA,
∴△AOC是等边三角形,
∴AC=OA=OC,
∴AC=OD;
(2)△BCD是等边三角形.
理由:弦CD垂直平分OA,
∴BC=BD,
∵OC=OD,
∴∠DOE=∠COE=60°,
∴∠COD=120°,
∴∠CBD=
1 |
2 |
∴△BCD是等边三角形;
(3)若AC=AM,则点M与点D重合,此时∠ACM=30°;
若AM=CM,则点M在AC的垂直平分线上,当点M在劣弧
AC |
ABC |
若AC=CM,则∠ACM=120°.
综上可得:∠ACM的度数为:15°,30°,75°,120°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询