数据可视化的交互技术有哪些

 我来答
成都加米谷大数据
2021-03-31 · 超过82用户采纳过TA的回答
知道小有建树答主
回答量:278
采纳率:83%
帮助的人:9万
展开全部
 一、常用的数据可视化技术
  数据可视化技术在应用过程中,多数非技术驱动,而是目标驱动。如图显示了目前业界广泛使用的根据目标分类的数据可视化方法,数据可视化目标抽象为对比、分布、组成以及关系。
  按目标分类的常用数据可视化方法
  1、对比。比较不同元素之间或不同时刻之间的值。
  2、分布。查看数据分布特征,是数据可视化最为常用的场景之一。
  3、组成。查看数据静态或动态组成。
  4、关系。查看变量之间的相关性,这常常用于结合统计学相关性分析方法,通过视觉结合使用者专业知识与场景需求判断多个因素之间的影响关系。
  大规模数据可视化一般认为是处理数据规模达到TB或PB级别的数据。经过数十年的发展,大规模数据可视化经过了大量研究,重点介绍其中的并行可视化和原位(in situ)可视化。
  (1)并行可视化
  并行可视化通常包括3种并行处理模式,分别是任务并行、流水线并行、数据并行。
  任务并行将可视化过程分为独立的子任务,同时运行的子任务之间不存在数据依赖。
  流水线并行采用流式读取数据片段,将可视化过程分为多个阶段,计算机并行执行各个阶段加速处理过程。
  数据并行是一种“单程序多数据”方式,将数据划分为多个子集,然后以子集为粒度并行执行程序处理不同的数据子集。
  (2)原位可视化
  数值模拟过程中生成可视化,用于缓解大规模数值模拟输出瓶颈。根据输出不同,原位可视化分为图像、分布、压缩与特征。
  输出为图像的原位可视化,在数值模拟过程中,将数据映射为可视化,并保存为图像。
  输出为分布数据的原位可视化,根据使用者定义的统计指标,在数值模拟过程中计算统计指标并保存,后续进行统计数据可视化;
  输出为压缩数据的原位可视化采用压缩算法降低数值模拟数据输出规模,将压缩数据作为后续可视化处理的输入;
  输出为特征的原位可视化采用特征提取方法,在数值模拟过程中提取特征并保存,将特征数据作为后续可视化处理的输入。
  (3)时序数据可视化
  时序数据可视化是帮助人类通过数据的视角观察过去,预测未来,例如建立预测模型,进行预测性分析和用户行为分析。
  面积图可显示某时间段内量化数值的变化和发展,最常用来显示趋势。气泡图可以将其中一条轴的变量设置为时间,或者把数据变量随时间的变化制成动画来显示。蜡烛图通常用作交易工具。
  甘特图通常用作项目管理的组织工具,热图通过色彩变化来显示数据,直方图适合用来显示在连续间隔或特定时间段内的数据分布。
  折线图用于在连续间隔或时间跨度上显示定量数值,最常用来显示趋势和关系。南丁格尔玫瑰图绘制于极坐标系之上,适用于周期性时序数据。OHLC图通常用作交易工具。
  螺旋图沿阿基米德螺旋线绘制基于时间的数据。堆叠式面积图的原理与简单面积图相同,但它能同时显示多个数据系列。量化波形图可显示不同类别的数据随着时间的变化。
  另外,具有空间位置信息的时序数据,常常将上述可视化方法地图结合,例如轨迹图。
  
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式