椭圆C: x2 a2 + y2 b2 =1(a>b>0)的左右焦点分别为F1,F2,若椭圆C上恰好有 20

椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.... 椭圆C: x2 a2 + y2 b2 =1(a>b>0)的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是(  )
A.( 1 3 , 2 3 ) B.( 1 2 ,1) C.( 2 3 ,1) D.( 1 3 , 1 2 )∪( 1 2 ,1)答案说∴点P在以F1为圆心,半径为焦距2c的圆上
因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,
存在2个满足条件的等腰△F1F2P,
此时a-c<2c为什么a-c小于2c
展开
 我来答
搜索好产品
2015-01-13 · TA获得超过4961个赞
知道大有可为答主
回答量:3252
采纳率:90%
帮助的人:655万
展开全部
F1P=F1F2=2c
F1P+F2P=2a
2c+F2P=2a
c+0.5F2P=a
a-c=0.5F2P
a>c
a-c=0.5F2P<F1F2
a-c<2c
茹翊神谕者

2022-04-17 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1645万
展开全部

简单计算一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式