对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)设f″(x)是函数y=f(x)的导数y=f′(x)的导数

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(... 对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.己知f(x)=x3-3x2+2x+2,请回答下列问题:(1)求函数f(x)的“拐点”A的坐标______;(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论______. 展开
 我来答
金田未来
推荐于2016-04-22 · 超过56用户采纳过TA的回答
知道答主
回答量:111
采纳率:0%
帮助的人:135万
展开全部
(1)依题意,得:f′(x)=3x2-6x+2,∴f″(x)=6x-6.
由f″(x)=0,即 6x-6=0.∴x=1,又 f(1)=2,
∴f(x)=x3-3x2+2x+2的“拐点”坐标是(1,2).
故答案为:(1,2)
(2)由(1)知“拐点”坐标是(1,2).
而f(1+x)+f(1-x)=(1+x)3-3(1+x)2+2(1+x)+2+(1-x)3-3(1-x)2+2(1-x)+2
=2+6x2-6-6x2+4+4=4=2f(1),
由定义(2)知:f(x)=x3-3x2+2x+2关于点(1,2)对称.
一般地,三次函数f(x)=ax3+bx2+cx+d (a≠0)的“拐点”是(
?b
3a
,f(-
b
3a
)),它就是f(x)的对称中心.
(或者:任何一个三次函数都有拐点;任何一个三次函数都有对称中心;任何一个三次函数平移后可以是奇函数;都对.)
故答案为:任何一个三次函数都有拐点
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式