25题求解

 我来答
qsmm
2015-03-01 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.8亿
展开全部

(1)如图,过点C作CM⊥AC交AF延长线于点M,
∵∠BAC=90°,AF⊥BE于G,∴∠1+∠5=∠2+∠5="90°" .∴∠1=∠2.
又∵∠BAC=∠ACM=90°,AB=AC,∴△ABE≌△CAM. ∴AE=CM,∠5=∠M.
∵AE=EC,∴EC=CM.
∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°.
∵∠ACM=90°,∴∠4=90°-45°=45°=∠ACF.
∴△ECF≌△MCF.∴∠6=∠M. ∴∠6=∠5.
∵AB=AC,点D、E分别是AB、AC边的中点,∴AD=AE.
又∵AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD.∴∠1=∠3. ∴∠3+∠6=90°.
∴∠EHC=90°.∴EF⊥CD.

 

 

(2)如图,过点C作CM⊥AC交AF延长线于点M,
由(1)得:△ABE≌△CAM,∴AE=CM,∠5=∠M,BE=AM.
由(1)得:△ABE≌△ACD,∴∠1=∠3.
∵FP⊥CD于H,∠BAC=90°,∴∠3+∠6=∠1+∠5. ∴∠6=∠5.
∵∠6=∠8,∠7=∠5,∴∠7=∠8. ∴EP=QP.
∵∠6=∠5,∠5=∠M,∴∠6=∠M.
∵AB=AC,∠BAC=90°, ∴∠ABC=∠ACB=45°.
∵∠ACM=90°,∴∠4=90°-45°=45°=∠ACF. ∴△QCF≌△MCF.
∴FQ=FM.
∴BP=BE+PE=AM+PQ=(AF+FM)+PQ=AF+FQ+PQ=AF+FP.

1428078357
2015-03-01 · TA获得超过1026个赞
知道答主
回答量:316
采纳率:0%
帮助的人:86.6万
展开全部
好复杂,做不下去了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式