已知向量a=(cosx,sinx)向量b=(cosx,根号3cosx),f(x)=ab
(1)求函数f(x)的最小正周期(2)求函数f(x)的单调递增区间(3)若f(x)=1且x属于〈派/4,3派/4〉,求x的值...
(1)求函数f(x)的最小正周期
(2)求函数f(x)的单调递增区间
(3)若f(x)=1 且x属于〈派/4,3派/4〉,求x的值 展开
(2)求函数f(x)的单调递增区间
(3)若f(x)=1 且x属于〈派/4,3派/4〉,求x的值 展开
1个回答
展开全部
(1)
f(x)=cos²x+√3sinxcosx
=(1+cos2x)/2+√3/2sin2x
=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+(1/2)
最小正周期为π
(2)
把2x+π/6代入到标准正弦函数sint中去解出单调区间的做法是:
由 - π/2+2kπ≤2x+π/6≤π/2+2kπ得:
- π/3+kπ≤x≤π/6+kπ
所以原函数的单调增区间是:
【- π/3+kπ,π/6+kπ】
(3)
sin(2x+π/6)+(1/2)=1
sin(2x+π/6)=(1/2)
π/4≤x≤3π/4==>2π/3≤2x+π/6≤5π/3==>2x+π/6=5π/6
x=π/3
f(x)=cos²x+√3sinxcosx
=(1+cos2x)/2+√3/2sin2x
=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+(1/2)
最小正周期为π
(2)
把2x+π/6代入到标准正弦函数sint中去解出单调区间的做法是:
由 - π/2+2kπ≤2x+π/6≤π/2+2kπ得:
- π/3+kπ≤x≤π/6+kπ
所以原函数的单调增区间是:
【- π/3+kπ,π/6+kπ】
(3)
sin(2x+π/6)+(1/2)=1
sin(2x+π/6)=(1/2)
π/4≤x≤3π/4==>2π/3≤2x+π/6≤5π/3==>2x+π/6=5π/6
x=π/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询