1个回答
展开全部
解:
设公比为q,数列是单调递增等比数列,则首项a1>0,公比q>1
a3+2是a2、a4的等差中项,则2(a3+2)=a2+a4
a2+a3+a4=2(a3+2)+a3=3a3+4=28
3a3=24
a3=8
a2+a3+a4=28
a3/q+a3+a3q=28
a3=8代入,整理,得
2q²-5q+2=0
(2q-1)(q-2)=0
q=1/2(<1,舍去)或q=2
an=a1q^(n-1)=a3q^(n-3)=8×2^(n-3)=2ⁿ
bn=9+log(1/2)an=9+log(1/2)(2ⁿ)=9-n
n≤9时,bn≥0 |bn|=bn
Tn=|b1|+|b2|+...+|bn|=9n-(1+2+...+n)=9n-n(n+1)/2=n(17-n)/2
n≥10时,bn<0 |bn|=-bn
Tn=|b1|+|b2|+...+|b9|+|b10|+...+|bn|
=(b1+b2+...+b9)-(b10+b11+...+bn)
=-(b1+b2+...+bn)+2(b1+b2+...+b9)
=-[9n-(1+2+...+n)]+2[9×9-(1+2+...+9)]
=n(n-17)/2+ 72
设公比为q,数列是单调递增等比数列,则首项a1>0,公比q>1
a3+2是a2、a4的等差中项,则2(a3+2)=a2+a4
a2+a3+a4=2(a3+2)+a3=3a3+4=28
3a3=24
a3=8
a2+a3+a4=28
a3/q+a3+a3q=28
a3=8代入,整理,得
2q²-5q+2=0
(2q-1)(q-2)=0
q=1/2(<1,舍去)或q=2
an=a1q^(n-1)=a3q^(n-3)=8×2^(n-3)=2ⁿ
bn=9+log(1/2)an=9+log(1/2)(2ⁿ)=9-n
n≤9时,bn≥0 |bn|=bn
Tn=|b1|+|b2|+...+|bn|=9n-(1+2+...+n)=9n-n(n+1)/2=n(17-n)/2
n≥10时,bn<0 |bn|=-bn
Tn=|b1|+|b2|+...+|b9|+|b10|+...+|bn|
=(b1+b2+...+b9)-(b10+b11+...+bn)
=-(b1+b2+...+bn)+2(b1+b2+...+b9)
=-[9n-(1+2+...+n)]+2[9×9-(1+2+...+9)]
=n(n-17)/2+ 72
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询