三角函数有哪些解题技巧?

 我来答
匿名用户
2013-06-22
展开全部
三角函数的相关概念
锐角三角函数
正弦:sinα=∠α的对边/∠α 的斜边
余弦:cosα=∠α的邻边/∠α的斜边
正切:tanα=∠α的对边/∠α的邻边
余切:cotα=∠α的邻边/∠α的对边[1]
三角关系
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα·secα=1
商的关系:

平方关系:

特殊值
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[2]
倍角公式
二倍角公式
正弦
sin2A=2sinA·cosA
余弦

正切
tan2A=(2tanA)/(1-tan^2(A))
三倍角公式

三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推导
sin(3a)
=sin(a+2a)
=sin2acosa+cos2asina
=2sina(1-sin^2a)+(1-2sin^2a)sina
=3sina-4sin^3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos^2a-1)cosa-2(1-cos^2a)cosa
=4cos^3a-3cosa
sin3a=3sina-4sin^3a
=4sina(3/4-sin^2a)
=4sina[(√3/2)-sina][(√3/2)+sina]
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos^3a-3cosa
=4cosa(cos^2a-3/4)
=4cosa[cos^2a-(√3/2)^2]
=4cosa(cosa-cos30°)(cosa+cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
现列出公式如下:
sin2α=2sinαcosα  tan2α=2tanα/(1-tan^2(α))  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
可别轻视这些字符,它们在数学学习中会起到重要作用,包括在一些图像问题和函数问题中
三倍角公式
sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)
tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)
七倍角公式
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))
cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))
tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式
sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
N倍角公式
根据棣莫弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)
为方便描述,令sinθ=s,cosθ=c
考虑n为正整数的情形:
cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>;比较两边的实部与虚部
实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*
虚部:i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …
对所有的自然数n:
⒈cos(nθ):
公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
⒉sin(nθ):
⑴当n是奇数时:公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也 就是sinθ)表示。
⑵当n是偶数时:公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。
例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
其他重要公式
一个特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)
坡度公式
我们通常把坡面的铅直高度h与水平宽度l的比叫做坡度(也叫坡比), 用字母i表示,
即i=h / l,坡度的一般形式写成l : m形式,如i=1:5.如果把坡面与水平面的夹角记作
a(叫做坡角),那么i=h/l=tan a.
半角公式
tan^2(α/2)=(1-cosα)/(1+cosα)
sin^2(A/2)=[1-cos(A)]/2
cos^2(A/2)=[1+cos(A)]/2

半角公式
两角和公式

两角和公式
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)[1]
三角和公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
和差化积
sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2]

和差化积公式
sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)*(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)*(1+tanAtanB)[1]
积化和差
sinαsinβ=-[cos(α+β)-cos(α-β)] /2
cosαcosβ=[cos(α+β)+cos(α-β)]/2
sinαcosβ=[sin(α+β)+sin(α-β)]/2
cosαsinβ=[sin(α+β)-sin(α-β)]/2[1]
诱导公式
三角函数的诱导公式(六公式)
  公式一: 
  sin(α+k*2π)=sinα
cos(α+k*2π)=cosα
tan(α+k*2π)=tanα
  公式二:
sin(π+α) = -sinα
  cos(π+α) = -cosα
tan(π+α)=tanα
  公式三:
  sin(-α) = -sinα
  cos(-α) = cosα
  tan (-α)=-tanα
  公式四:
  sin(π-α) = sinα
  cos(π-α) = -cosα
tan(π-α) =-tanα
  公式五:
  sin(π/2-α) = cosα
cos(π/2-α) =sinα
由于π/2+α=π-(π/2-α),由公式四和公式五可得
  公式六:
  sin(π/2+α) = cosα
cos(π/2+α) = -sinα
  诱导公式 记背诀窍:奇变偶不变,符号看象限。
万能公式

万能公式
sinα=2tan(α/2)/[1+(tan(α/2))^2]
cosα=[1-(tan(α/2))^2]/[1+(tan(α/2))^2]
tanα=2tan(α/2)/[1-(tan(α/2))^2]
收缩公式

asinA+bcosB=根号下a方+b方×(根号下a方+b方分之a×sinA+根号下a方+b方分之b×cosB)
令根号下a方+b方分之a=cosC
则根号下a方+b方分之b=sinC asinA+bcosB=根号下a方+b方(sinAcosC+cosBsinC)=根号下a方+b方×sin(A+C)
双曲函数
sh a = [e^a-e^(-a)]/2
ch a = [e^a+e^(-a)]/2
th a = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
A·sin(ωt+θ)+ B·sin(ωt+φ) =
√{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)}}
√表示根号,包括{……}中的内容
三角规律
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
三角函数本质:

根据三角函数定义推导公式
根据右图,有
sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y
深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导
sin(A+B) = sinAcosB+cosAsinB 为例:
推导:
首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。
A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))
OA'=OA=OB=OD=1,D(1,0)
∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2
和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)

单位圆定义

单位圆
六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是:
图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的x和y坐标分别等于 cosθ和 sinθ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sinθ=y/1 和 cosθ=x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。
重要定理
正弦定理
正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R
其中,R为△ABC的外接圆的半径。
余弦定理
余弦定理:在△ABC中,b^2 = a^2 + c^2 - 2ac·cos θ。
其中,θ为边a与边c的夹角。

掌握了上述这些技巧,解答三角函数一类的问题也就不难了!
姬伦戢英豪
2010-06-08 · TA获得超过4086个赞
知道大有可为答主
回答量:3131
采纳率:28%
帮助的人:378万
展开全部
主要是记住公式,我已开始也是不会,主要是想不起来用那个公式,后来公式记熟了就好了
一定要记住的黄金公式:cos2α=2cos^2—1=1—2sinα^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式