ap聚类算法的聚类中心怎么定义
1个回答
2015-07-10
展开全部
在聚类分析中,K-均值聚类算法(k-means algorithm)是无监督分类中的一种基本方法,其也称为C-均值算法,其基本思想是:通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果.\x0d假设要把样本集分为c个类别,算法如下:\x0d(1)适当选择c个类的初始中心;\x0d(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类,\x0d(3)利用均值等方法更新该类的中心值;\x0d(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代.\x0d下面介绍作者编写的一个分两类的程序,可以把其作为函数调用.\x0d%% function [samp1,samp2]=kmeans(samp); 作为调用函数时去掉注释符\x0dsamp=[11.1506 6.7222 2.3139 5.9018 11.0827 5.7459 13.2174 13.8243 4.8005 0.9370 12.3576]; %样本集\x0d[l0 l]=size(samp);\x0d%%利用均值把样本分为两类,再将每类的均值作为聚类中心\x0dth0=mean(samp);n1=0;n2=0;c1=0.0;c1=double(c1);c2=c1;for i=1:lif samp(i)<th0\x0dc1=c1+samp(i);n1=n1+1;elsec2=c2+samp(i);n2=n2+1;endendc1=c1/n1;c2=c2/n2; %初始聚类中心t=0;cl1=c1;cl2=c2;\x0dc11=c1;c22=c2; %聚类中心while t==0samp1=zeros(1,l);\x0dsamp2=samp1;n1=1;n2=1;for i=1:lif abs(samp(i)-c11)<abs(samp(i)-c22)\x0dsamp1(n1)=samp(i);\x0dcl1=cl1+samp(i);n1=n1+1;\x0dc11=cl1/n1;elsesamp2(n2)=samp(i);\x0dcl2=cl2+samp(i);n2=n2+1;\x0dc22=cl2/n2;endendif c11==c1 && c22==c2t=1;endcl1=c11;cl2=c22;\x0dc1=c11;c2=c22;\x0dend %samp1,samp2为聚类的结果.\x0d初始中心值这里采用均值的办法,也可以根据问题的性质,用经验的方法来确定,或者将样本集随机分成c类,计算每类的均值.\x0dk-均值算法需要事先知道分类的数量,这是其不足之处.
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询