求高等数学试卷答案
一,填空题1,函数值f(-1)=0
2,x→0,lim(1-x)^(2/x)=1
3,∫[1/√(x²+a²)]dx=in[x+√(x²+a²)]+C
二,选择题4, (A)1, 5,(A)1/[√(x ²+1)³]
6,
三,7, x→0, lim [ln(1+2x²)](1-cos x) =[2x/(1+2x²)] / sin x=2x/[(1+2x²) sin x]
8,求函数y= x ³在M0(2,8)处的切线方程
切点为N(-1,-1),切线方程是y=3x+2
9.y′=dy/dx=-cos[2x/(1+x)²]• [2x/(1+x)²]′
[2x/(1+x)²]′=[2(1+x)²-4x(1+x)]/ (1+x)^4=2(1-x)/(1+x)³
∴dy/dx=-cos[2x/(1+x)²]•[2(1-x)/(1+x)³]
dy =-cos[2x/(1+x)²]•[2(1-x)/(1+x)³]dx
10求函数y=2x/ln x的极小值
求导并等于0得,y′=[2ln x-2x/ x]/(ln x)²=0
ln x=1,x= e,代入y=2x/ln x得,
min y=2e
四,12.求函数y= sin ² x的100阶导数
y′=2cos x,y″=-2sinx,y的3阶导数=-2 cos x,y的4阶导数=2 sin x;
y的5阶导数=2cos x,之后循环,
∴函数y= sin ² x的100阶导数=2sinx
14,∫{[√(x²-4)]/ x} dx=∫(x ²-4)-2 arc cos(2/| x |)+C
2013-06-24
太多,不一定有时间全做,也不一定能全做出。有些耐心就是。
f(-1) = 0
1/e²
ln[x + √(x² + a²)] + C
B. (1/e)
A. 1/√(x² + 1)³
C. √(1 + sin²x)dx
2
y' = 3x², x = 2, y' = 12, y - 8 = 12(x - 2), y = 12x - 32
= {[2(1 + x²) - 2x(2x)]/(1 + x²)²}cos[2x/(1 + x²)] = 2(1 - x²)cos[2x/(1 + x²)]/(1 + x²)²
y' = (2lnx - 2x*1/x)/ln²x = 2(lnx - 1)/ln²x = 0, x = e, f(e) = 2e
分子不清楚
-2⁹⁹cos2x
y' = 2(x + 1)²(2x - 1)
x < 1/2: 递减
x > 1/2: 递增= √(x² - 4) + 2arctan[2/√(x² - 4)] + C
f(sint) = cos2t + tan²t
x = sint, 0 < x < 1, cost = √(1 - sin²t)
cos2t = 1 - 2sin²t = 1 - 2x², tan²t = sin²t/cos²t = x²/√(1 - x²)
f(x) = 1 - 2x² + x²/√(1 - sin²t)