第十题谢谢 20
3个回答
展开全部
在Rt△AEF中,AE²+AF²=EF²,且EF=DF=6-AF,
则有x²+AF²=(6-AF)²,解得AF=3-(1/12)x²,EF=3+(1/12)x²
∠FEQ=∠D=90°,则∠AEF+∠BEG=90°
又∠AEF+∠AFE=90°
∴∠AFE=∠BEG
∴Rt△AEF∽Rt△BGE
∴AE/BG=EF/EG=AF/BE
且BE=AB-AE=6-x
∴BG=12x/(6+x),EG=(36+x²)/(6+x)
∴GQ=EQ-EG=6-(36+x²)/(6+x)=(6x-x²)/(6+x)
∵∠BGE=∠HGQ
∴Rt△BEG∽Rt△QHG
∴BG/GQ=BE/HQ
解得HQ=(6-x)²/12
在直角梯形EFHQ中,上底HQ=(6-x)²/12,下底EF=3+(1/12)x²,高EQ=6
∴其面积为y=(1/2)(HQ+EF)·EQ=(1/2)x²-3x+18
则有x²+AF²=(6-AF)²,解得AF=3-(1/12)x²,EF=3+(1/12)x²
∠FEQ=∠D=90°,则∠AEF+∠BEG=90°
又∠AEF+∠AFE=90°
∴∠AFE=∠BEG
∴Rt△AEF∽Rt△BGE
∴AE/BG=EF/EG=AF/BE
且BE=AB-AE=6-x
∴BG=12x/(6+x),EG=(36+x²)/(6+x)
∴GQ=EQ-EG=6-(36+x²)/(6+x)=(6x-x²)/(6+x)
∵∠BGE=∠HGQ
∴Rt△BEG∽Rt△QHG
∴BG/GQ=BE/HQ
解得HQ=(6-x)²/12
在直角梯形EFHQ中,上底HQ=(6-x)²/12,下底EF=3+(1/12)x²,高EQ=6
∴其面积为y=(1/2)(HQ+EF)·EQ=(1/2)x²-3x+18
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询