怎么判断函数和数列是收敛或发散的

 我来答
教育小百科达人
推荐于2019-08-02 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:458万
展开全部

判断函数和数列是否收敛或者发散:

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替 

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

扩展资料:

数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。发散级数(英语:Divergent Series)指(按柯西意义下)不收敛的级数。如级数  和  ,也就是说该级数的部分和序列没有一个有穷极限。

如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数调和级数的发散性被中世纪数学家奥里斯姆所证明。

收敛级数映射到它的和的函数是线性的,从而根据哈恩-巴拿赫定理可以推出,这个函数能扩张成可和任意部分和有界的级数的可和法,这个事实一般并不怎么有用,因为这样的扩张许多都是互不相容的,并且也由于这种算子的存在性证明诉诸于选择公理或它的等价形式,例如佐恩引理,所以它们还都是非构造的。

发散级数这一分支,作为分析学的领域,本质上关心的是明确而且自然的技巧,例如阿贝尔可和法、切萨罗可和法、波莱尔可和法以及相关对象。维纳陶伯型定理的出现标志着这一分支步入了新的阶段,它引出了傅里叶分析中巴拿赫代数与可和法间出乎意料的联系。

发散级数的求和作为数值技巧也与插值法和序列变换相关,这类技巧的例子有:帕德近似、Levin类序列变换以及与量子力学中高阶微扰论的重整化技巧相关的依序映射。

收敛数列

令{  }为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|  -A|<b恒成立,就称数列{  }收敛于A(极限为A),即数列{  }为收敛数列。

函数收敛

定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

收敛的定义方式很好的体现了数学分析的精神实质。

如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数

对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。

函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。

这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)

记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0

参考资料:百度百科-收敛 百度百科-发散

百度网友4faf722
推荐于2019-08-16 · TA获得超过345个赞
知道答主
回答量:15
采纳率:0%
帮助的人:1845
展开全部

收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的。函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。有界函数指的是对于定义域中的任意一个值,相应的函数值都在一个区间内变化,也就是函数值的绝对值总小于某一个固定值,那函数就是有界的。

收敛函数一定有界,但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。

判断数列是否收敛或者发散:

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替 

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

拓展资料:

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。

函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的函数极限证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。

以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。

问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
零上尘C
高粉答主

推荐于2019-10-18 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1093
采纳率:100%
帮助的人:30.2万
展开全部

判断函数是否收敛或者发散

收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的。函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。有界函数指的是对于定义域中的任意一个值,相应的函数值都在一个区间内变化,也就是函数值的绝对值总小于某一个固定值,那函数就是有界的。

收敛函数一定有界,但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。

判断数列是否收敛或者发散

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去
如 1 + 1/n,用1来代替
乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来
如 1/n * sin(1/n) 用1/n^2 来代替 

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

拓展资料

收敛数列具有的性质:

1、唯一性。如果数列Xn收敛,每个收敛的数列只有一个极限。

2、有界性。定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。

3、保号性。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。

参考资料:

百度百科——收敛性

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
沉舟1号
推荐于2019-10-03 · TA获得超过3270个赞
知道答主
回答量:58
采纳率:100%
帮助的人:1.6万
展开全部

1、判断函数和数列是收敛或发散:看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去。即如果数列项数n趋于无穷时,数列的极限==实数a,那么这个数列就是收敛的;如果找不到实数a,那么就是发散的。

2、收敛:一个无穷数列收敛就是数列项数很大时,该项的值还是一个有限值,它可被圈在一个有限长的区间。

如 1 + 1/n,用1来代替,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来;如 1/n * sin(1/n) 用1/n^2 来代替。

拓展资料:

函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。

函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的函数极限证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。

以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。

问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
遺莂緈菔
推荐于2019-10-07 · TA获得超过2.3万个赞
知道答主
回答量:243
采纳率:100%
帮助的人:11.3万
展开全部

看n趋向无穷大时,Xn是否趋向一个常数,即可以判断收敛还是发散。

可是有时Xn比较复杂,并不好观察,加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小。

拓展资料:

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

在数学分析中,与收敛(convergence)相对的概念就是发散(divergence)。

函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式