如图,在三角形ABC中,AB=CB,角ABC=90°,F为AB延长线上一点,点E在BC上,求
展开全部
(1)①证明:∵∠ABC=90°,D为AB延长线上一点,
∴∠ABE=∠CBD=90°,
在△ABE和△CBD中,
AB=CB
∠ABE=∠CBD
BE=BD
,
∴△ABE≌△CBD(SAS);
∵AB=CB,∠ABC=90°,
∴∠CAB=45°,
∵∠CAE=30°,
∴∠BAE=∠CAB-∠CAE=45°-30°=15°,
∵△ABE≌△CBD,
∴∠BCD=∠BAE=15°,
∴∠BDC=90°-∠BCD=90°-15°=75°;
∴∠ABE=∠CBD=90°,
在△ABE和△CBD中,
AB=CB
∠ABE=∠CBD
BE=BD
,
∴△ABE≌△CBD(SAS);
∵AB=CB,∠ABC=90°,
∴∠CAB=45°,
∵∠CAE=30°,
∴∠BAE=∠CAB-∠CAE=45°-30°=15°,
∵△ABE≌△CBD,
∴∠BCD=∠BAE=15°,
∴∠BDC=90°-∠BCD=90°-15°=75°;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询