初三数学题 求帮忙
展开全部
解:(1)当点P是弧BC的中点时,DP是⊙O的切
线.理由如下:
∵AB=AC,
∴弧AB=弧AC,
又∵弧PB=弧PC,
∴弧PBA=弧PCA,
∴PA是○O的直径,
∵弧PB=弧PC,
∴∠1=∠2,
又AB=AC,
∴PA⊥BC,
又∵DP∥BC,
∴DP⊥PA,
∴DP是⊙O的切线.
(2)连接OB,设PA交BC于点E.
由垂径定理,得BE=BC=6,
在Rt△ABE中,由勾股定理,得:
AE=8,
设⊙O的半径为r,则OE=8﹣r,
在Rt△OBE中,由勾股定理,得:
r2=62+(8﹣r)2,
解得r=25/4,
∵DP∥BC,∴∠ABE=∠D,
又∵∠1=∠1,
∴△ABE∽△ADP,
∴6:DP=8;2×25/4,
解得:DP=75/8.
线.理由如下:
∵AB=AC,
∴弧AB=弧AC,
又∵弧PB=弧PC,
∴弧PBA=弧PCA,
∴PA是○O的直径,
∵弧PB=弧PC,
∴∠1=∠2,
又AB=AC,
∴PA⊥BC,
又∵DP∥BC,
∴DP⊥PA,
∴DP是⊙O的切线.
(2)连接OB,设PA交BC于点E.
由垂径定理,得BE=BC=6,
在Rt△ABE中,由勾股定理,得:
AE=8,
设⊙O的半径为r,则OE=8﹣r,
在Rt△OBE中,由勾股定理,得:
r2=62+(8﹣r)2,
解得r=25/4,
∵DP∥BC,∴∠ABE=∠D,
又∵∠1=∠1,
∴△ABE∽△ADP,
∴6:DP=8;2×25/4,
解得:DP=75/8.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询