行列式展开公式是什么?
行列式依行展开(expansion of a determinant by a row)是计算行列式的一种方法,设ai1,ai2,…,ain (1≤i≤n)为n阶行列式D=|aij|的任意一行中的元素,而Ai1,Ai2,…,Ain分别为它们在D中的代数余子式,则D=ai1Ai1+ai2Ai2+…+ainAin称为行列式D的依行展开。
如果行列式D的第i行各元素与第j行各元素的代数余子式对应相乘后再相加,则当i≠j时,其和为零,行列式依行或依列展开不仅对行列式计算有重要作用,且在行列式理论中也有重要的应用 。
注意:
行列式计算有以下几种方法:①化成三角形行列式法、②降阶法、③拆成行列式之和法、④范德蒙行列式、⑤数学归纳法、⑥逆推法。
1、化成三角形行列式法:这种化成三角形行列式法在用的时候要求我们将某一个行或者是列全部的化成1,这样的话就能方便我们利用行列之间的关系将其转化为一个三角形行列式,从而可以求出来这个三角形行列式的值。
因为我们求的行列式的值之间的各个元素是相等的,各个元素之外也是相等的,这一点也是需要注意的,在使用的时候可以直接转化一下,做题就简单多了,这种也是一种十分明确的利用行列式的特点来简化行列式的方法。
2、降阶法:降阶法也是一种利用行列式的特点来简化行列式的方法之一,我们在使用的时候,利用行列式的性质将一个行或者一个列转化为一个非零的元素的时候,然后可以按照相关的展开行或者列,每当你展开一次,这就说明行列式降低了一阶,直到无法展开之后就是最简单的行列式降阶法了。
不过这一点只是适用于一些阶层比较低的行列式,针对于一些比较多阶的行列式是不可以使用的。