函数周期性5个结论的推导是什么?
具体如下:
1、f (x+a) =-f (x)
那么f (x+2a) =f[ (x+a) +a]=-f (x+a) =-[-f (x) ]=f (x)
所以f (x)是以2a为周期的周期函数。
2、f (x+a) =1/f (x)
那么f (x+2a) =f[ (x+a) +a]=1/f (x+a) =1/[1/f (x) ]=f (x)
所以f (x)是以2a为周期的周期函数。
3、f (x+a) =-1/f (x)
那么f (x+2a) =f[ (x+a) +a]=-1/f (x+a) =1/[-1/f (x) ]=f (x)
所以f (x)是以2a为周期的周期函数。
4、函数f(x)在区间X上有定义,若存在一-一个与x无关的正数T,使对于任一-x∈X,恒有f(x+T)=f(x)
5、f(x)是以T为周期的周期函数,把满足上式的最小正数T称为函数f(x)的周期。周期函数的运算性质:
①若T为f (x)的周期,则f (ax+b)的周期为T/al。
②若f(x),g(x)均是以T为周期的函数,则f(X)+g(X)也是以T为周期的函数。
③若f (x), g(x)分别是以T1, T2, T1≠T2为周期的函数,则f (x)+g (x)是以T1, T2的最小公倍数为周期的函数。
2021-11-22 广告