幂级数的收敛半径是什么?

 我来答
聊娱乐的吃瓜群众
高能答主

2022-02-05 · 真正的娱乐是应着真正的工作要求而发生的。
聊娱乐的吃瓜群众
采纳数:1652 获赞数:86564

向TA提问 私信TA
展开全部

幂级数收敛半径是一个非负的实数或无穷大,使得在|z-a|<r时幂级数收敛,在|z-a|>r时幂级数发散。

根据达朗贝尔审敛法,收敛半径R满足:如果幂级数满足,则:ρ是正实数时,R=1/ρ;ρ=0时,R=+∞;ρ=+∞时,R=0。根据根值审敛法,则有柯西-阿达马公式。

收敛半径可以被如下定理刻画:

一个中心为a的幂级数f的收敛半径R等于a与离a最近的使得函数不能用幂级数方式定义的点的距离。到a的距离严格小于R的所有点组成的集合称为收敛圆盘。

最近点的取法是在整个复平面中,而不仅仅是在实轴上,即使中心和系数都是实数时也是如此。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式