八年级数学下册第二章综合测试题
一、选择题:(每小题3分,共24分)
1.下列方程中,常数项为零的是( )
A.x2+x=1 B.2x2-x-12=12; C.2(x2-1)=3(x-1) D.2(x2+1)=x+2
2.下列方程:①x2=0,② -2=0,③2 +3x=(1+2x)(2+x),④3 - =0,
⑤ -8x+ 1=0中,一元二次方程的个数是( )
A.1个 B2个 C.3个 D.4个
3.把方程(x- )(x+ )+(2x-1)2=0化为一元二次方程的一般形式是( )
A.5x2-4x-4=0 B.x2-5=0 C.5x2-2x+1=0 D.5x2-4x+6=0
4.方程x2=6x的根是( )
A.x1=0,x2=-6 B.x1=0,x2=6 C.x=6 D.x=0
5.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( )
A. ; B. ;
C. ; D.以上都不对
6.若两个连续整数的积是56,则它们的和是( )
A.11 B.15 C.-15 D.±15
7.不解方程判断下列方程中无实数根的是( )
A.-x2=2x-1 B.4x2+4x+ =0;
C. D.(x+2)(x-3)==-5
8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )
A.200(1+x)2=1000 B.200+200×2x=1000
C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000
二、填空题:(每小题3分,共24分)
9.方程 化为一元二次方程的一般形式是________,它的一次项系数是______.
10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.
11.用______法解方程3(x-2)2=2x-4比较简便.
12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.
13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.
14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.
15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.
16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.
三、解答题(32分)
17.用适当的方法解下列一元二次方程.(每小题5分,共15分)
(1)5x(x-3)=6-2x; (2)3y2+1= ; (3)(x-a)2=1-2a+a2(a是常数)
18.(7分)已知关于x的'一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?
19.(10分)已知关于x的一元二次方程x2-2kx+ k2-2=0.
(1)求证:不论k为何值,方程总有两不相等实数根.
(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.
四、列方程解应用题(每题10分,共20分)
20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.
21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.
参考答案
一、 DAABC,DBD
二、9.x2+4x-4=0,4 10. 11.因式分解法 12.1或 13.2 14.
15. 16.30%
三、17.(1)3, ;(2) ;(3)1,2a-1 18.m=-6,n=8
19.(1)Δ=2k2+8>0, ∴不论k为何值,方程总有两不相等实数根. (2)
四、20.20% 21.20%