二阶 非齐次 线性微分方程咯~求解咯~ 这个用那个特征方程可以求出来不,右边含有三角函数的形式,有 50
二阶非齐次线性微分方程咯~求解咯~这个用那个特征方程可以求出来不,右边含有三角函数的形式,有什么可以总结下的方法吗?比如右边f(x)为e^x·sinx或sinx^2或si...
二阶 非齐次 线性微分方程咯~求解咯~
这个用那个特征方程可以求出来不,右边含有三角函数的形式,有什么可以总结下的方法吗?比如右边f(x)为e^x·sinx或sinx^2或sinx或(x^2+1)sinx这四类的情况,谢谢你们 展开
这个用那个特征方程可以求出来不,右边含有三角函数的形式,有什么可以总结下的方法吗?比如右边f(x)为e^x·sinx或sinx^2或sinx或(x^2+1)sinx这四类的情况,谢谢你们 展开
1个回答
展开全部
这是我总结的
二次非齐次微分方程的一般解法
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根:
令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)
第二步:通解:
若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
若r1=r2,则y=(C1+C2x)*e^(r1*x)
若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:特解:
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)
若λ不是特征根 k=0 y*=Q(x)*e^(λx)
若λ是单根 k=1 y*=x*Q(x)*e^(λx)
若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。
最后结果就是y=通解+特解
通解的系数C1,C2是任意常数
有问题可以再问我,拿例子的话好说明问题
二次非齐次微分方程的一般解法
一般式是这样的ay''+by'+cy=f(x)
第一步:求特征根:
令ar²+br+c=0,解得r1和r2两个值,(这里可以是复数,例如(βi)²=-β²)
第二步:通解:
若r1≠r2,则y=C1*e^(r1*x)+C2*e^(r2*x)
若r1=r2,则y=(C1+C2x)*e^(r1*x)
若r1,2=α±βi,则y=e^(αx)*(C1cosβx+C2sinβx)
第三步:特解:
f(x)的形式是e^(λx)*P(x)型,(注:P(x)是关于x的多项式,且λ经常为0)
则y*=x^k*Q(x)*e^(λx) (注:Q(x)是和P(x)同样形式的多项式,例如P(x)是x²+2x,则设Q(x)为ax²+bx+c,abc都是待定系数)
若λ不是特征根 k=0 y*=Q(x)*e^(λx)
若λ是单根 k=1 y*=x*Q(x)*e^(λx)
若λ是二重根 k=2 y*=x²*Q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)
f(x)的形式是e^(λx)*P(x)cosβx或e^(λx)*P(x)sinβx
若α+βi不是特征根,y*=e^λx*Q(x)(Acosβx+Bsinβx)
若α+βi是特征根,y*=e^λx*x*Q(x)(Acosβx+Bsinβx)(注:AB都是待定系数)
第四步:解特解系数
把特解的y*'',y*',y*都解出来带回原方程,对照系数解出待定系数。
最后结果就是y=通解+特解
通解的系数C1,C2是任意常数
有问题可以再问我,拿例子的话好说明问题
更多追问追答
追问
这是一般解法,我问的是不一般的解法
蟹蟹
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |