如图就是证明:MN=定值
建立如图上的直角坐标系,圆为x^2+y^2=1
角BOD=k(定值) P(cost,sint) (t是变量)
M(cost,0)
CD直线方程: y=tank x
PN直线方程: y-sint=-1/tank (x-cost)
上二式可解得N
tank *x -sint=-1/tank (x-cost)=-x/tank+cost/tank
x(tank+1/tank)=sint+cost/tank
x=(sint+cost/tank) /(tank+1/tank)
y=tank (sint+cost/tank)/(tank+1/tank)
N((sint+cost/tank) /(tank+1/tank) ,tank (sint+cost/tank)/(tank+1/tank))
所以MN=根号((cost-(sint+cost/tank) /(tank+1/tank))^2+(tank (sint+cost/tank)/(tank+1/tank))^2)
=1/ltank+1/tankl *根号(( cost(tank+1/tank)-sint-cost/tank)^2+(tank(sint+cost/tank)^2)
=1/ltank+1/tankl *根号((cost tank-sint)^2 +(sint tank+cost)^2)
=1/ltank+1/tankl *根号(cos^2 t tan^2 k+sin^2 t -2costsinttank +sin^2t tan^2k+cos^2 t+2costsinttank)
=1/ltank+1/tankl *根号(cos^2ttan^2k+sin^2t tan^2 k)
=ltankl/ltank+1/tankl
=tan^2 k/(tan^2 k+1)
=定值
所以结论得证
这位大神啊,俺只是一个初二的学生啊!
还没有学到三角函数那么高深的东西啊!
希望您能用初二的知识解,谢谢啦!
如图,作DT垂直AB
令DT=K (定值)
设P(a,b) (a,b变量) 其中a^2+b^2=1
求出MN用a,b,k 表示