在三角形ABC中,若cos^2 A+cos^2 B+cos^2 C=1,则三角形ABC的形状是?

 我来答
游戏王17
2022-05-18 · TA获得超过892个赞
知道小有建树答主
回答量:214
采纳率:0%
帮助的人:65.2万
展开全部
若cos^2 A+cos^2 B+cos^2 C=1
3- (sin^2 A+ sin ^2 B+ sin ^2 C)=1
sin^2 A+ sin ^2 B+ sin ^2 C=2
而,sin^2C=sin^2A+sin^2B-2sinAsinBcosC,(余弦定理,正弦定理结合)
则有,2sin^2A+2sin^2B-2sinAsinBcosC=2
则,2sinAsinBcosC=2sin^2A+2sin^2B-2
=-cos(2A)-cos2B=-2cos(A+B)cos(A-B)=2cosCcos(A-B)
=2cosC(cosAcosB+sinAsinB)
即,cosCcosAcosB=0,A+B+C=180°且A,B,C均大于0°.
CosA、cosB、cosC之中至少有一个是0.
即 A、B、C 之中至少有一个是90°
故三角形ABC为直角△.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式