已知向量a=(sinx,3/2),b=(cosx,-1).(1)当向量a∥b时,求sinx·cosx的值
已知向量a=(sinx,3/2),b=(cosx,-1).(1)当向量a∥b时,求sinx·cosx的值;(2)求f(x)=(a+b)•b对称轴和单调区间。求...
已知向量a=(sinx,3/2),b=(cosx,-1).(1)当向量a∥b时,求sinx·cosx的值;(2)求f(x)=( a + b )• b对称轴和单调区间。求解答!!!
展开
1个回答
展开全部
1
a∥b,即:sinx/cosx=-3/2
即:tanx=-3/2
sinxcosx=(1/2)sin(2x)=(1/2)(2tanx)/(1+tanx^2)
=-6/13
2
f(x)=(a+b)·b=a·b+|b|^2
=sinxcosx-3/2+cosx^2+1
=sin(2x)/2+(1+cos(2x))/2-1/2
=sin(2x)/2+cos(2x)/2
=(√2/2)sin(2x+π/4)
对称轴:2x+π/4=kπ+π/2
即:x=kπ/2+π/8,k∈Z
增区间:2kπ-π/2≤2x+π/4≤2kπ+π/2
即:kπ-3π/8≤x≤kπ+π/8,k∈Z
减区间:2kπ+π/2≤2x+π/4≤2kπ+3π/2
即:kπ+π/8≤x≤kπ+5π/8,k∈Z
a∥b,即:sinx/cosx=-3/2
即:tanx=-3/2
sinxcosx=(1/2)sin(2x)=(1/2)(2tanx)/(1+tanx^2)
=-6/13
2
f(x)=(a+b)·b=a·b+|b|^2
=sinxcosx-3/2+cosx^2+1
=sin(2x)/2+(1+cos(2x))/2-1/2
=sin(2x)/2+cos(2x)/2
=(√2/2)sin(2x+π/4)
对称轴:2x+π/4=kπ+π/2
即:x=kπ/2+π/8,k∈Z
增区间:2kπ-π/2≤2x+π/4≤2kπ+π/2
即:kπ-3π/8≤x≤kπ+π/8,k∈Z
减区间:2kπ+π/2≤2x+π/4≤2kπ+3π/2
即:kπ+π/8≤x≤kπ+5π/8,k∈Z
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询