多元函数的连续和极限题 80

(x^2+y^2)不为0时,f(x,y)=(xy^2)/(x^2+y^2);(x^2+y^2)为0时,f(x,y)=0,讨论这个函数在原点的连续性,偏导数的存在性,是否可... (x^2+y^2) 不为0时, f(x,y)=(xy^2)/(x^2+y^2);(x^2+y^2) 为0时,f(x,y)=0, 讨论这个函数在原点的连续性,偏导数的存在性,是否可微。 展开
algbraic
2013-06-24 · TA获得超过4924个赞
知道大有可为答主
回答量:1281
采纳率:100%
帮助的人:759万
展开全部
首先x²+y² ≥ 2|xy|, 故1/2 ≥ |xy|/(x²+y²) ≥ 0, 于是|y|/2 ≥ |xy²/(x²+y²)| = |f(x,y)| ≥ 0.
当(x,y) → (0,0)时, |y|/2 → 0, 因此f(x,y) → 0 = f(0,0), 函数在原点连续.

在f(x,y)在原点对x的偏导即f(x,0)对x的导数.
f(x,0) = 0对任意x成立, 故∂f/∂x在原点存在并等于0.
同理, 由f(0,y) = 0对任意y成立, ∂f/∂y也在原点存在并等于0.

由定义, f(x,y)在原点可微即f(x,y)-f(0,0)-x·∂f(0,0)/∂x-y·∂f(0,0)/∂y = o(√(x²+y²)).
代入f(0,0) = 0, ∂f(0,0)/∂x = ∂f(0,0)/∂y = 0即f(x,y) = o(√(x²+y²)).
然而对x = y, 有f(x,y) = f(x,x) = x³/(2x²) = x/2 = √(x²+y²)/(2√2).
因此(x,y) → (0,0)时, f(x,y)并不是√(x²+y²)的高阶无穷小, 也即f(x,y)在原点不可微.
注: 也可以用另一种说法: f(x,y)在原点对向量(1,1)的方向导数 = 1/2,
并不等于(1,1)·(∂f(0,0)/∂x,∂f(0,0)/∂y) = ∂f(0,0)/∂x+∂f(0,0)/∂y = 0, 因此在原点不可微.
kent0607
高粉答主

2013-06-24 · 关注我不会让你失望
知道大有可为答主
回答量:6.2万
采纳率:77%
帮助的人:7098万
展开全部
  这类题在许多《数学分析》和《高等数学》教材了都有,不是作为例题就是习题。
该题在这里写起来很麻烦的,你自己翻翻书,依样画葫芦就行。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
非正常人类123
2013-06-24 · TA获得超过317个赞
知道小有建树答主
回答量:251
采纳率:0%
帮助的人:160万
展开全部
啥叫微分讲明白就会了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式