级数(sinn)/n 是什么收敛

(sinn)/n是什么收敛绝对收敛条件收敛发散不能判定正考试呢。。求救求救... (sinn)/n 是什么收敛
绝对收敛 条件收敛 发散 不能判定
正考试呢。。求救求救
展开
 我来答
痴情镯
高粉答主

2020-01-26 · 关注我不会让你失望
知道小有建树答主
回答量:1040
采纳率:100%
帮助的人:16.7万
展开全部

1、级数(sinn)/n是绝对收敛;

2、绝对收敛一般用来描述无穷级数或无穷积分的收敛情况;

3、若函数f(x)在[a,b]上可积,且|f(x)|的无穷积分(从a到+∞)上收敛,则称 f(x) 的无穷积分(从a到+∞)绝对收敛。绝对收敛一定收敛。

扩展资料:

由条件收敛级数重排后所得的新级数,即使收敛,也不一定收敛于原来的和数。而且,条件收敛级数适当排列后,可得到发散级数,或收敛于事先任意指定的数。

无论无穷级数还是无穷积分,它们都是要么发散,要么条件收敛,要么绝对收敛,三者必居其一。

参考资料来源:百度百科-绝对收敛

果果就是爱生活
高能答主

2020-01-26 · 专注生活教育知识分享
果果就是爱生活
采纳数:2071 获赞数:272294

向TA提问 私信TA
展开全部

绝对收敛。

解析:

如果n的绝对值->无穷大 , (sinn)/n->0;

如果n的绝对值->无穷小 , (sinn)/n->1

所以级数(sinn)/n是绝对收敛。

扩展资料:

级数收敛的判别

利用部分和数列判别法、比较原则、比式判别法、根式判别法、积分判别法以及拉贝判别法等。

对于正项级数,比较判别法是一个相当有效的判别法,通过找一个新正项级数,比较通项,如果原级数的通项小,新级数收敛,则原级数收敛;

如果新级数发散,原级数通项大,则原级数发散,通常在判别过程中使用其极限形式。局限性:当级数过于复杂时,要找的那个新级数究竟是什么很难判断,通常的方法是对原级数的通项做泰勒展开,以找到与之等价的p级数

参考资料来源:百度百科-绝对收敛

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ofm
2013-06-24 · TA获得超过555个赞
知道小有建树答主
回答量:525
采纳率:0%
帮助的人:248万
展开全部
绝对收敛
原因:如果n的绝对值->无穷大 , (sinn)/n->0;
如果n的绝对值->无穷小 , (sinn)/n->1
所以 级数(sinn)/n是绝对收敛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式