若矩阵A、B满足(A+B)^2=A^2+2AB+B^2,则AB=BA.这个怎么证明?

 我来答
大沈他次苹0B
2022-05-29 · TA获得超过7360个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:182万
展开全部
因为 (A+B)^2 = A^2+AB+BA+B^2
所以 (A+B)^2=A^2+2AB+B^2
A^2+AB+BA+B^2 = A^2+2AB+B^2
AB+BA = 2AB
BA = AB 即A,B可将交换.
所以 (A+B)^2=A^2+2AB+B^2 的充分必要条件是A,B可将交换.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式