展开全部
请输入您的回答...题,连续偏导
追问
???
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设F(x,y,z)=xy-zlny+e^(xz)-1, 依次考察隐函数存在定理2的条件:
1)F'x=y+z*e^(xz), F'y=x-z/y, F'z=-lny+x*e^(xz),显然存在(0,1,1)点的某个邻域使上述三个偏导数均连续
2)在(0,1,1)处,F(0,1,1)=0
3)在(0,1,1)处,F'x(0,1,1)=2≠0, F'y(0,1,1)=-1≠0, F'z(0,1,1)=0
可见,x=x(y,z)和y=y(x,z)均满足定理条件,z=z(x,y)不满足条件
故,根据隐函数存在定理2,F(x,y,z)=0在(0,1,1)点的某个邻域恒能唯一确定连续且具有连续偏导数的函数x=x(y,z)和y=y(x,z).
1)F'x=y+z*e^(xz), F'y=x-z/y, F'z=-lny+x*e^(xz),显然存在(0,1,1)点的某个邻域使上述三个偏导数均连续
2)在(0,1,1)处,F(0,1,1)=0
3)在(0,1,1)处,F'x(0,1,1)=2≠0, F'y(0,1,1)=-1≠0, F'z(0,1,1)=0
可见,x=x(y,z)和y=y(x,z)均满足定理条件,z=z(x,y)不满足条件
故,根据隐函数存在定理2,F(x,y,z)=0在(0,1,1)点的某个邻域恒能唯一确定连续且具有连续偏导数的函数x=x(y,z)和y=y(x,z).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询