第二次数学危机是什么??
2个回答
2013-06-25
展开全部
第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?
直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到 等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。
直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到 等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。
2013-06-25
展开全部
第二次数学危机
第二次数学危机
早在古代,人们就对长度、面积、体积的度量问题感兴趣。古希腊的欧多克斯引入量的观念来考虑连续变动的东西,并完全依据几何来严格处理连续量。这造成数与量的长期脱离。古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例。他们对于连续与离散的关系很有兴趣,尤其是芝诺提出的四个著名的悖论:
第一个悖论是说运动不存在,理由是运动物体到达目的地之前必须到达半路,而到达半路之前又必须到达半路的半路……如此下去,它必须通过无限多个点,这在有限长时间之内是无法办到的。
第二个悖论是跑得很快的阿希里赶不上在他前面的乌龟。因为乌龟在他前面时,他必须首先到达乌龟的起点,然后用第一个悖论的逻辑,乌龟者在他的前面。这两个悖论是反对空间、时间无限可分的观点的。
而第三、第四悖论是反对空间、时间由不可分的间隔组成。第三个悖论是说“飞矢不动”,因为在某一时问间隔,飞矢总是在某个空间间隔中确定的位置上,因而是静止的。第四个悖论是游行队伍悖论,内容大体相似。这说明希腊人已经看到无穷小与“很小很小”的矛盾。当然他们无法解决这些矛盾。
希腊人虽然没有明确的极限概念,但他们在处理面积体积的问题时,却有严格的逼近步骤,这就是所谓“穷竭法”。它依靠间接的证明方法,证明了许多重要而难证的定理。
到了十六、十七世纪,除了求曲线长度和曲线所包围的面积等类问题外,还产生了许多新问题,如求速度、求切线,以及求极大、极小值等问题。经过许多人多年的努力,终于在十七世纪晚期,形成了无穷小演算——微积分这门学科,这也就是数学分析的开端。
牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:1,把各种问题的解法统一成一种方法,微分法和积分法;2,有明确的计算微分法的步骤;3.微分法和积分法互为逆运算。
由于运算的完整性和应用范围的广泛性,使微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是δs/δt当δt趋向于零时的值。δt是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。
十八世纪的数学家成功地用微积分解决了许多实际问题,因此有些人就对这些基础问题的讨论不感兴趣。如达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。更有许多人认为所谓的严密化就是烦琐。
但也因此,微积分的基础问题一直受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。
十八世纪的数学思想的确是不严密的、直观的、强调形式的计算,而不管基础的可靠与否,其中特别是:没有清楚的无穷小概念,因此导数、微分、积分等概念不清楚;对无穷大的概念也不清楚;发散级数求和的任意性;符号使用的不严格性;不考虑连续性就进行微分,不考虑导数及积分的存在性以及可否展成幂级数等等。
一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由威尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。
波尔查诺不承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。
在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε - δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。
十九世纪七十年代初,威尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。
同时,威尔斯特拉斯给出一个处处不可微的连续函数的例子。这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础——实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是二十世纪数学基础中的首要问题。
第二次数学危机
早在古代,人们就对长度、面积、体积的度量问题感兴趣。古希腊的欧多克斯引入量的观念来考虑连续变动的东西,并完全依据几何来严格处理连续量。这造成数与量的长期脱离。古希腊的数学中除了整数之外,并没有无理数的概念,连有理数的运算也没有,可是却有量的比例。他们对于连续与离散的关系很有兴趣,尤其是芝诺提出的四个著名的悖论:
第一个悖论是说运动不存在,理由是运动物体到达目的地之前必须到达半路,而到达半路之前又必须到达半路的半路……如此下去,它必须通过无限多个点,这在有限长时间之内是无法办到的。
第二个悖论是跑得很快的阿希里赶不上在他前面的乌龟。因为乌龟在他前面时,他必须首先到达乌龟的起点,然后用第一个悖论的逻辑,乌龟者在他的前面。这两个悖论是反对空间、时间无限可分的观点的。
而第三、第四悖论是反对空间、时间由不可分的间隔组成。第三个悖论是说“飞矢不动”,因为在某一时问间隔,飞矢总是在某个空间间隔中确定的位置上,因而是静止的。第四个悖论是游行队伍悖论,内容大体相似。这说明希腊人已经看到无穷小与“很小很小”的矛盾。当然他们无法解决这些矛盾。
希腊人虽然没有明确的极限概念,但他们在处理面积体积的问题时,却有严格的逼近步骤,这就是所谓“穷竭法”。它依靠间接的证明方法,证明了许多重要而难证的定理。
到了十六、十七世纪,除了求曲线长度和曲线所包围的面积等类问题外,还产生了许多新问题,如求速度、求切线,以及求极大、极小值等问题。经过许多人多年的努力,终于在十七世纪晚期,形成了无穷小演算——微积分这门学科,这也就是数学分析的开端。
牛顿和莱布尼兹被公认为微积分的奠基者。他们的功绩主要在于:1,把各种问题的解法统一成一种方法,微分法和积分法;2,有明确的计算微分法的步骤;3.微分法和积分法互为逆运算。
由于运算的完整性和应用范围的广泛性,使微积分成为解决问题的重要工具。同时关于微积分基础的问题也越来越严重。以求速度为例,瞬时速度是δs/δt当δt趋向于零时的值。δt是零、是很小的量,还是什么东西,这个无穷小量究竟是不是零。这引起了极大的争论,从而引发了第二次数学危机。
十八世纪的数学家成功地用微积分解决了许多实际问题,因此有些人就对这些基础问题的讨论不感兴趣。如达朗贝尔就说,现在是“把房子盖得更高些,而不是把基础打得更加牢固”。更有许多人认为所谓的严密化就是烦琐。
但也因此,微积分的基础问题一直受到一些人的批判和攻击,其中最有名的是贝克莱主教在1734年的攻击。
十八世纪的数学思想的确是不严密的、直观的、强调形式的计算,而不管基础的可靠与否,其中特别是:没有清楚的无穷小概念,因此导数、微分、积分等概念不清楚;对无穷大的概念也不清楚;发散级数求和的任意性;符号使用的不严格性;不考虑连续性就进行微分,不考虑导数及积分的存在性以及可否展成幂级数等等。
一直到十九世纪二十年代,一些数学家才开始比较关注于微积分的严格基础。它们从波尔查诺、阿贝尔、柯西、狄里克莱等人的工作开始,最终由威尔斯特拉斯、戴德金和康托尔彻底完成,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了一个严格的基础。
波尔查诺不承认无穷小数和无穷大数的存在,而且给出了连续性的正确定义。柯西在1821年的《代数分析教程》中从定义变量开始,认识到函数不一定要有解析表达式。他抓住了极限的概念,指出无穷小量和无穷大量都不是固定的量而是变量,并定义了导数和积分;阿贝尔指出要严格限制滥用级数展开及求和;狄里克莱给出了函数的现代定义。
在这些数学工作的基础上,维尔斯特拉斯消除了其中不确切的地方,给出现在通用的ε - δ的极限、连续定义,并把导数、积分等概念都严格地建立在极限的基础上,从而克服了危机和矛盾。
十九世纪七十年代初,威尔斯特拉斯、戴德金、康托尔等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理,从而使数学分析终于建立在实数理论的严格基础之上了。
同时,威尔斯特拉斯给出一个处处不可微的连续函数的例子。这个发现以及后来许多病态函数的例子,充分说明了直观及几何的思考不可靠,而必须诉诸严格的概念及推理。由此,第二次数学危机使数学更深入地探讨数学分析的基础——实数论的问题。这不仅导致集合论的诞生,并且由此把数学分析的无矛盾性问题归结为实数论的无矛盾性问题,而这正是二十世纪数学基础中的首要问题。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询