求曲面积分∫∫zds期中∑为抛物面z=2-(x^2+y^2)在xoy面上方的部分

答案是37π/10... 答案是37π/10 展开
fin3574
高粉答主

2013-06-28 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134628

向TA提问 私信TA
展开全部
Σ:z = 2 - (x² + y²) ==> x² + y² = 2 - z、开口向下。上侧
dz/dx = - 2x、dz/dy = - 2y
∫∫Σ z dS
= ∫∫D [ 2 - (x² + y²) ] √(1 + 4x² + 4y²) dxdy
= ∫(0→2π) dθ ∫(0→√2) ( 2 - r² )√(1 + 4r²) * r dr
= (2π)(37/20)
= 37π/10
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式