已知:如图一,在RT△ABC中,∠C=90°,∠A=60°,AB=12CM,点P从点A沿AB以每秒2CM的速度向点B运动,点Q从点C沿
接上:CA以每秒1CM的速度向点A运动,设点P、Q分别从A、C同时出发,运动时间为t秒(0<t<6),回答下列问题:(1)直接写出线段QP、AQ的长(含t的代数式表示)A...
接上:CA以每秒1CM的速度向点A运动,设点P、Q分别从A、C同时出发,运动时间为t秒(0<t<6),回答下列问题:
(1)直接写出线段QP、AQ的长(含t的代数式表示)AP= AQ=
(2)设△APQ的面积为S,写出S与t的函数关系式
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此刻t的值,若不存在,说明理由。 展开
(1)直接写出线段QP、AQ的长(含t的代数式表示)AP= AQ=
(2)设△APQ的面积为S,写出S与t的函数关系式
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此刻t的值,若不存在,说明理由。 展开
3个回答
展开全部
(1)直接写出线段QP、AQ的长(含t的代数式表示)AP=2t , AQ=6-t
(2)设△APQ的面积为S,写出S与t的函数关系式
S=√3t(6-t)/2
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此刻t的值,若不存在,说明理由。
解:作PE⊥BC于E
当PE=t/2时,PC=PQ,四边形PQP'C为菱形
∵RT△ABC中,∠C=90°,∠A=60°,AB=12
∴∠B=30°
∴BP=2PE
又∵BP=12-2t
∴t=12-2t
得 t=4
即CQ=4<6,符合题意
答:t=4时,把△PQC沿QC翻折,得到四边形PQP'C是菱形。
(2)设△APQ的面积为S,写出S与t的函数关系式
S=√3t(6-t)/2
(3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQP'C,那么是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此刻t的值,若不存在,说明理由。
解:作PE⊥BC于E
当PE=t/2时,PC=PQ,四边形PQP'C为菱形
∵RT△ABC中,∠C=90°,∠A=60°,AB=12
∴∠B=30°
∴BP=2PE
又∵BP=12-2t
∴t=12-2t
得 t=4
即CQ=4<6,符合题意
答:t=4时,把△PQC沿QC翻折,得到四边形PQP'C是菱形。
更多追问追答
追问
问一下为什么t=12-2t?还有PE=t/2又是什么意思?
2013-06-24 · 知道合伙人教育行家
关注
展开全部
1) 根据已知条件,可得出AC = 6 cm , AP =2t ,AQ = 6 - t
2) 假设Q点在AP上有一个高h,其大小 h = AQ*sin 60°= AQ/2
所以△APQ的面积 S = AP*h*1/2 = 2t * (6-t)/2*1/2 = t ( 6 - t) /2
3)要使四边形PQP'C为菱形,那必须假设PQ = PC(因为CP'Q是三角形CPQ的翻折,而菱形的四边相等),因此
2t = 6 - t
3t = 6
t = 2
2) 假设Q点在AP上有一个高h,其大小 h = AQ*sin 60°= AQ/2
所以△APQ的面积 S = AP*h*1/2 = 2t * (6-t)/2*1/2 = t ( 6 - t) /2
3)要使四边形PQP'C为菱形,那必须假设PQ = PC(因为CP'Q是三角形CPQ的翻折,而菱形的四边相等),因此
2t = 6 - t
3t = 6
t = 2
追问
不好意思,我初二,还没学sin。而且我觉得你的第二问是错的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:连接CF。
∵AC=EC AF=EF
∴∠AFC=90°
矩形中,∠ADC=90°
∴FACD共圆,即F在ACD所在的圆中。
∵矩形中∠ADC+∠ABC=180°
∴ABCD共圆,即B在ACD所在的圆中
∴BF在ACD所在的圆中
∴∠BFD=∠BAD=90°
即BF⊥DF
∵AC=EC AF=EF
∴∠AFC=90°
矩形中,∠ADC=90°
∴FACD共圆,即F在ACD所在的圆中。
∵矩形中∠ADC+∠ABC=180°
∴ABCD共圆,即B在ACD所在的圆中
∴BF在ACD所在的圆中
∴∠BFD=∠BAD=90°
即BF⊥DF
追问
你这个跟我的题目不沾边吧?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询